From 61e9cd605580aa3ad34b9c5579b378d786ab5b50 Mon Sep 17 00:00:00 2001 From: David <forenkram@gmx.de> Date: Tue, 30 Jun 2020 17:52:09 +0200 Subject: [PATCH] make it possible to give initial iteration a timestep number --- .../layered_soil/TP-R-layered_soil.py | 2 +- ...ed_soil_with_inner_patch-all-params-one.py | 8 +- ...layered_soil_with_inner_patch-realistic.py | 8 +- ...h_inner_patch-all-params-one-mesh-study.py | 8 +- ...oil_with_inner_patch-pure-dd-mesh-study.py | 8 +- ...layered_soil_with_inner_patch-realistic.py | 81 +- .../TP-TP-layered_soil_with_inner_patch.py | 803 +++--------------- ...ayered_soil_with_inner_patch_mesh_study.py | 802 +++-------------- 8 files changed, 298 insertions(+), 1422 deletions(-) diff --git a/Two-phase-Richards/multi-patch/layered_soil/TP-R-layered_soil.py b/Two-phase-Richards/multi-patch/layered_soil/TP-R-layered_soil.py index 880eb3a..4c4e798 100755 --- a/Two-phase-Richards/multi-patch/layered_soil/TP-R-layered_soil.py +++ b/Two-phase-Richards/multi-patch/layered_soil/TP-R-layered_soil.py @@ -57,7 +57,7 @@ resolutions = { # starttimes gives a list of starttimes to run the simulation from. # The list is looped over and a simulation is run with t_0 as initial time # for each element t_0 in starttimes. -starttimes = [0.0] +starttimes = {0: 0.0} timestep_size = 0.001 number_of_timesteps = 5 diff --git a/Two-phase-Richards/multi-patch/layered_soil_with_inner_patch/TP-R-layered_soil_with_inner_patch-all-params-one.py b/Two-phase-Richards/multi-patch/layered_soil_with_inner_patch/TP-R-layered_soil_with_inner_patch-all-params-one.py index 55bc777..8998a94 100755 --- a/Two-phase-Richards/multi-patch/layered_soil_with_inner_patch/TP-R-layered_soil_with_inner_patch-all-params-one.py +++ b/Two-phase-Richards/multi-patch/layered_soil_with_inner_patch/TP-R-layered_soil_with_inner_patch-all-params-one.py @@ -55,7 +55,7 @@ resolutions = { # starttimes gives a list of starttimes to run the simulation from. # The list is looped over and a simulation is run with t_0 as initial time # for each element t_0 in starttimes. -starttimes = [0.0] +starttimes = {0: 0.0} timestep_size = 0.01 number_of_timesteps = 5 @@ -407,7 +407,6 @@ f = open(thisfile, 'r') print(f.read()) f.close() - # MAIN ######################################################################## if __name__ == '__main__': # dictionary of simualation parameters to pass to the run function. @@ -450,7 +449,10 @@ if __name__ == '__main__': "write_to_file": write_to_file, "analyse_condition": analyse_condition } - for starttime in starttimes: + for number_shift, starttime in starttimes.items(): + simulation_parameter.update( + {"starttime_timestep_number_shift": number_shift} + ) for mesh_resolution, solver_tol in resolutions.items(): simulation_parameter.update({"solver_tol": solver_tol}) hlp.info(simulation_parameter["use_case"]) diff --git a/Two-phase-Richards/multi-patch/layered_soil_with_inner_patch/TP-R-layered_soil_with_inner_patch-realistic.py b/Two-phase-Richards/multi-patch/layered_soil_with_inner_patch/TP-R-layered_soil_with_inner_patch-realistic.py index aeb8c73..e4aebcd 100755 --- a/Two-phase-Richards/multi-patch/layered_soil_with_inner_patch/TP-R-layered_soil_with_inner_patch-realistic.py +++ b/Two-phase-Richards/multi-patch/layered_soil_with_inner_patch/TP-R-layered_soil_with_inner_patch-realistic.py @@ -55,7 +55,7 @@ resolutions = { # starttimes gives a list of starttimes to run the simulation from. # The list is looped over and a simulation is run with t_0 as initial time # for each element t_0 in starttimes. -starttimes = [0.0] +starttimes = {0: 0.0} timestep_size = 0.001 number_of_timesteps = 10 @@ -405,7 +405,6 @@ f = open(thisfile, 'r') print(f.read()) f.close() - # MAIN ######################################################################## if __name__ == '__main__': # dictionary of simualation parameters to pass to the run function. @@ -448,7 +447,10 @@ if __name__ == '__main__': "write_to_file": write_to_file, "analyse_condition": analyse_condition } - for starttime in starttimes: + for number_shift, starttime in starttimes.items(): + simulation_parameter.update( + {"starttime_timestep_number_shift": number_shift} + ) for mesh_resolution, solver_tol in resolutions.items(): simulation_parameter.update({"solver_tol": solver_tol}) hlp.info(simulation_parameter["use_case"]) diff --git a/Two-phase-Richards/multi-patch/layered_soil_with_inner_patch/mesh_study/TP-R-layered_soil_with_inner_patch-all-params-one-mesh-study.py b/Two-phase-Richards/multi-patch/layered_soil_with_inner_patch/mesh_study/TP-R-layered_soil_with_inner_patch-all-params-one-mesh-study.py index 7fc2778..f5c0cfc 100755 --- a/Two-phase-Richards/multi-patch/layered_soil_with_inner_patch/mesh_study/TP-R-layered_soil_with_inner_patch-all-params-one-mesh-study.py +++ b/Two-phase-Richards/multi-patch/layered_soil_with_inner_patch/mesh_study/TP-R-layered_soil_with_inner_patch-all-params-one-mesh-study.py @@ -55,7 +55,7 @@ resolutions = { # starttimes gives a list of starttimes to run the simulation from. # The list is looped over and a simulation is run with t_0 as initial time # for each element t_0 in starttimes. -starttimes = [0.0] +starttimes = {0: 0.0} timestep_size = 0.01 number_of_timesteps = 5 @@ -407,7 +407,6 @@ f = open(thisfile, 'r') print(f.read()) f.close() - # MAIN ######################################################################## if __name__ == '__main__': # dictionary of simualation parameters to pass to the run function. @@ -450,7 +449,10 @@ if __name__ == '__main__': "write_to_file": write_to_file, "analyse_condition": analyse_condition } - for starttime in starttimes: + for number_shift, starttime in starttimes.items(): + simulation_parameter.update( + {"starttime_timestep_number_shift": number_shift} + ) for mesh_resolution, solver_tol in resolutions.items(): simulation_parameter.update({"solver_tol": solver_tol}) hlp.info(simulation_parameter["use_case"]) diff --git a/Two-phase-Richards/multi-patch/layered_soil_with_inner_patch/mesh_study/TP-R-layered_soil_with_inner_patch-pure-dd-mesh-study.py b/Two-phase-Richards/multi-patch/layered_soil_with_inner_patch/mesh_study/TP-R-layered_soil_with_inner_patch-pure-dd-mesh-study.py index 3286af7..890fa5c 100755 --- a/Two-phase-Richards/multi-patch/layered_soil_with_inner_patch/mesh_study/TP-R-layered_soil_with_inner_patch-pure-dd-mesh-study.py +++ b/Two-phase-Richards/multi-patch/layered_soil_with_inner_patch/mesh_study/TP-R-layered_soil_with_inner_patch-pure-dd-mesh-study.py @@ -54,7 +54,7 @@ resolutions = { # starttimes gives a list of starttimes to run the simulation from. # The list is looped over and a simulation is run with t_0 as initial time # for each element t_0 in starttimes. -starttimes = [0.0] +starttimes = {0: 0.0} timestep_size = 0.01 number_of_timesteps = 5 @@ -404,7 +404,6 @@ f = open(thisfile, 'r') print(f.read()) f.close() - # MAIN ######################################################################## if __name__ == '__main__': # dictionary of simualation parameters to pass to the run function. @@ -447,7 +446,10 @@ if __name__ == '__main__': "write_to_file": write_to_file, "analyse_condition": analyse_condition } - for starttime in starttimes: + for number_shift, starttime in starttimes.items(): + simulation_parameter.update( + {"starttime_timestep_number_shift": number_shift} + ) for mesh_resolution, solver_tol in resolutions.items(): simulation_parameter.update({"solver_tol": solver_tol}) hlp.info(simulation_parameter["use_case"]) diff --git a/Two-phase-Richards/multi-patch/layered_soil_with_inner_patch/mesh_study/TP-R-layered_soil_with_inner_patch-realistic.py b/Two-phase-Richards/multi-patch/layered_soil_with_inner_patch/mesh_study/TP-R-layered_soil_with_inner_patch-realistic.py index adc2ca6..9af0be5 100755 --- a/Two-phase-Richards/multi-patch/layered_soil_with_inner_patch/mesh_study/TP-R-layered_soil_with_inner_patch-realistic.py +++ b/Two-phase-Richards/multi-patch/layered_soil_with_inner_patch/mesh_study/TP-R-layered_soil_with_inner_patch-realistic.py @@ -35,85 +35,85 @@ thisfile = "TP-R-layered_soil_with_inner_patch-realistic.py" # GENERAL SOLVER CONFIG ###################################################### # maximal iteration per timestep -max_iter_num = 700 +max_iter_num = 1000 FEM_Lagrange_degree = 1 # GRID AND MESH STUDY SPECIFICATIONS ######################################### -mesh_study = False +mesh_study = True resolutions = { - # 1: 2e-6, # h=2 - # 2: 2e-6, # h=1.1180 - # 4: 2e-6, # h=0.5590 - # 8: 2e-6, # h=0.2814 - 16: 8e-6, # h=0.1412 - # 32: 2e-6, - # 64: 2e-6, - # 128: 2e-6 + 1: 5e-5, # h=2 + 2: 5e-5, # h=1.1180 + 4: 5e-5, # h=0.5590 + 8: 5e-5, # h=0.2814 + 16: 3e-5, # h=0.1412 + 32: 5e-6, + 64: 3e-6, + 128: 2e-6 } # starttimes gives a list of starttimes to run the simulation from. # The list is looped over and a simulation is run with t_0 as initial time # for each element t_0 in starttimes. -starttimes = [0.0] -timestep_size = 0.01 -number_of_timesteps = 5 +starttimes = {0: 0.0} +timestep_size = 0.0025 +number_of_timesteps = 400 # LDD scheme parameters ###################################################### -Lw1 = 0.025 # /timestep_size -Lnw1 = Lw1 +Lw1 = 0.5 # /timestep_size +Lnw1 = 0.5 -Lw2 = 0.025 # /timestep_size -Lnw2 = Lw2 +Lw2 = 0.5 # /timestep_size +Lnw2 = 0.5 -Lw3 = 0.025 # /timestep_size -Lnw3 = Lw3 +Lw3 = 0.5 # /timestep_size +Lnw3 = 0.5 -Lw4 = 0.025 # /timestep_size -Lnw4 = Lw4 +Lw4 = 0.5 # /timestep_size +Lnw4 = 0.5 -Lw5 = 0.025 # /timestep_size -Lnw5 = Lw5 +Lw5 = 0.5 # /timestep_size +Lnw5 = 0.5 -Lw6 = 0.025 # /timestep_size -Lnw6 = Lw6 +Lw6 = 0.5 # /timestep_size +Lnw6 = 0.5 -lambda12_w = 4 +lambda12_w = 40 lambda12_nw = 4 -lambda23_w = 4 +lambda23_w = 40 lambda23_nw = 4 -lambda24_w = 4 +lambda24_w = 40 lambda24_nw= 4 -lambda25_w= 4 +lambda25_w= 40 lambda25_nw= 4 -lambda34_w = 4 +lambda34_w = 40 lambda34_nw = 4 -lambda36_w = 4 +lambda36_w = 40 lambda36_nw = 4 -lambda45_w = 4 +lambda45_w = 40 lambda45_nw = 4 -lambda46_w = 4 +lambda46_w = 40 lambda46_nw = 4 -lambda56_w = 4 +lambda56_w = 40 lambda56_nw = 4 include_gravity = True -debugflag = True +debugflag = False analyse_condition = False # I/O CONFIG ################################################################# # when number_of_timesteps is high, it might take a long time to write all # timesteps to disk. Therefore, you can choose to only write data of every # plot_timestep_every timestep to disk. -plot_timestep_every = 4 +plot_timestep_every = 1 # Decide how many timesteps you want analysed. Analysed means, that # subsequent errors of the L-iteration within the timestep are written out. number_of_timesteps_to_analyse = 5 @@ -159,7 +159,6 @@ output_string = "./output/{}-{}_timesteps{}_P{}".format( datestr, use_case, number_of_timesteps, FEM_Lagrange_degree ) - # DOMAIN AND INTERFACES ####################################################### substructuring = dss.layeredSoilInnerPatch() interface_def_points = substructuring.interface_def_points @@ -405,7 +404,6 @@ f = open(thisfile, 'r') print(f.read()) f.close() - # MAIN ######################################################################## if __name__ == '__main__': # dictionary of simualation parameters to pass to the run function. @@ -448,7 +446,10 @@ if __name__ == '__main__': "write_to_file": write_to_file, "analyse_condition": analyse_condition } - for starttime in starttimes: + for number_shift, starttime in starttimes.items(): + simulation_parameter.update( + {"starttime_timestep_number_shift": number_shift} + ) for mesh_resolution, solver_tol in resolutions.items(): simulation_parameter.update({"solver_tol": solver_tol}) hlp.info(simulation_parameter["use_case"]) @@ -461,7 +462,7 @@ if __name__ == '__main__': ) ) LDDsim.start() - LDDsim.join() + # LDDsim.join() # hlp.run_simulation( # mesh_resolution=mesh_resolution, # starttime=starttime, diff --git a/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch.py b/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch.py index 7be6b7a..5891b65 100755 --- a/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch.py +++ b/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch.py @@ -3,16 +3,15 @@ This program sets up an LDD simulation """ - import dolfin as df import sympy as sym -import functools as ft +import functions as fts import LDDsimulation as ldd import helpers as hlp import datetime import os -import pandas as pd - +import multiprocessing as mp +import domainSubstructuring as dss # init sympy session sym.init_printing() @@ -56,7 +55,7 @@ resolutions = { # starttimes gives a list of starttimes to run the simulation from. # The list is looped over and a simulation is run with t_0 as initial time # for each element t_0 in starttimes. -starttimes = [0.3] +starttimes = {0: 0.3} timestep_size = 0.001 number_of_timesteps = 5 @@ -160,216 +159,12 @@ output_string = "./output/{}-{}_timesteps{}_P{}".format( datestr, use_case, number_of_timesteps, FEM_Lagrange_degree ) - -# DOMAIN AND INTERFACES ####################################################### -# global domain -subdomain0_vertices = [df.Point(-1.0,-1.0), # - df.Point(1.0,-1.0),# - df.Point(1.0,1.0),# - df.Point(-1.0,1.0)] - -interface12_vertices = [df.Point(-1.0, 0.8), - df.Point(0.3, 0.8), - df.Point(0.5, 0.9), - df.Point(0.8, 0.7), - df.Point(1.0, 0.65)] - - - # interface23 -interface23_vertices = [df.Point(-1.0, 0.0), - df.Point(-0.35, 0.0), - # df.Point(6.5, 4.5), - df.Point(0.0, 0.0)] - -interface24_vertices = [interface23_vertices[2], - df.Point(0.6, 0.0), - ] - -interface25_vertices = [interface24_vertices[1], - df.Point(1.0, 0.0) - ] - - -interface32_vertices = [interface23_vertices[2], - interface23_vertices[1], - interface23_vertices[0]] - - -interface36_vertices = [df.Point(-1.0, -0.6), - df.Point(-0.6, -0.45)] - - -interface46_vertices = [interface36_vertices[1], - df.Point(0.3, -0.25)] - -interface56_vertices = [interface46_vertices[1], - df.Point(0.65, -0.6), - df.Point(1.0, -0.7)] - - - - -interface34_vertices = [interface36_vertices[1], - interface23_vertices[2]] - -# Interface 45 needs to be split, because of the shape. There can be triangles -# with two facets on the interface and this creates a rogue dof type error when -# integrating over that particular interface. Accordingly, the lambda_param -# dictionary has two entries for that interface. -interface45_vertices_a = [interface56_vertices[0], - df.Point(0.7, -0.2),#df.Point(0.7, -0.2), - ] -interface45_vertices_b = [df.Point(0.7, -0.2),#df.Point(0.7, -0.2), - interface25_vertices[0] - ] - -# interface_vertices introduces a global numbering of interfaces. -interface_def_points = [interface12_vertices, - interface23_vertices, - interface24_vertices, - interface25_vertices, - interface34_vertices, - interface36_vertices, - interface45_vertices_a, - interface45_vertices_b, - interface46_vertices, - interface56_vertices, - ] -adjacent_subdomains = [[1,2], - [2,3], - [2,4], - [2,5], - [3,4], - [3,6], - [4,5], - [4,5], - [4,6], - [5,6] - ] - -# subdomain1. -subdomain1_vertices = [interface12_vertices[0], - interface12_vertices[1], - interface12_vertices[2], - interface12_vertices[3], - interface12_vertices[4], # southern boundary, 12 interface - subdomain0_vertices[2], # eastern boundary, outer boundary - subdomain0_vertices[3]] # northern boundary, outer on_boundary - -# vertex coordinates of the outer boundaries. If it can not be specified as a -# polygon, use an entry per boundary polygon. This information is used for defining -# the Dirichlet boundary conditions. If a domain is completely internal, the -# dictionary entry should be 0: None -subdomain1_outer_boundary_verts = { - 0: [subdomain1_vertices[4], # - subdomain1_vertices[5], # eastern boundary, outer boundary - subdomain1_vertices[6], - subdomain1_vertices[0]] -} - -#subdomain1 -subdomain2_vertices = [interface23_vertices[0], - interface23_vertices[1], - interface23_vertices[2], - interface24_vertices[1], - interface25_vertices[1], # southern boundary, 23 interface - subdomain1_vertices[4], # eastern boundary, outer boundary - subdomain1_vertices[3], - subdomain1_vertices[2], - subdomain1_vertices[1], - subdomain1_vertices[0] ] # northern boundary, 12 interface - -subdomain2_outer_boundary_verts = { - 0: [subdomain2_vertices[9], - subdomain2_vertices[0]], - 1: [subdomain2_vertices[4], - subdomain2_vertices[5]] -} - - -subdomain3_vertices = [interface36_vertices[0], - interface36_vertices[1], - # interface34_vertices[0], - interface34_vertices[1], - # interface32_vertices[0], - interface32_vertices[1], - interface32_vertices[2] - ] - -subdomain3_outer_boundary_verts = { - 0: [subdomain3_vertices[4], - subdomain3_vertices[0]] -} - - -# subdomain3 -subdomain4_vertices = [interface46_vertices[0], - interface46_vertices[1], - # interface45_vertices[1], - interface45_vertices_a[1], - interface24_vertices[1], - interface24_vertices[0], - interface34_vertices[1] - ] - -subdomain4_outer_boundary_verts = None - -subdomain5_vertices = [interface56_vertices[0], - interface56_vertices[1], - interface56_vertices[2], - interface25_vertices[1], - interface25_vertices[0], - interface45_vertices_b[1], - interface45_vertices_b[0] -] - - -subdomain5_outer_boundary_verts = { - 0: [subdomain5_vertices[2], - subdomain5_vertices[3]] -} - - - -subdomain6_vertices = [subdomain0_vertices[0], - subdomain0_vertices[1], # southern boundary, outer boundary - interface56_vertices[2], - interface56_vertices[1], - interface56_vertices[0], - interface36_vertices[1], - interface36_vertices[0] - ] - -subdomain6_outer_boundary_verts = { - 0: [subdomain6_vertices[6], - subdomain6_vertices[0], - subdomain6_vertices[1], - subdomain6_vertices[2]] -} - - -subdomain_def_points = [subdomain0_vertices,# - subdomain1_vertices,# - subdomain2_vertices,# - subdomain3_vertices,# - subdomain4_vertices, - subdomain5_vertices, - subdomain6_vertices - ] - - -# if a subdomain has no outer boundary write None instead, i.e. -# i: None -# if i is the index of the inner subdomain. -outer_boundary_def_points = { - # subdomain number - 1: subdomain1_outer_boundary_verts, - 2: subdomain2_outer_boundary_verts, - 3: subdomain3_outer_boundary_verts, - 4: subdomain4_outer_boundary_verts, - 5: subdomain5_outer_boundary_verts, - 6: subdomain6_outer_boundary_verts -} +# DOMAIN AND INTERFACES ###################################################### +substructuring = dss.layeredSoilInnerPatch() +interface_def_points = substructuring.interface_def_points +adjacent_subdomains = substructuring.adjacent_subdomains +subdomain_def_points = substructuring.subdomain_def_points +outer_boundary_def_points = substructuring.outer_boundary_def_points # MODEL CONFIGURATION ######################################################### @@ -494,359 +289,40 @@ intrinsic_permeability = { 6: 0.01, #10e-3 } - -# relative permeabilty functions on subdomain 1 -def rel_perm1w(s): - # relative permeabilty wetting on subdomain1 - return intrinsic_permeability[1]*s**2 - - -def rel_perm1nw(s): - # relative permeabilty nonwetting on subdomain1 - return intrinsic_permeability[1]*(1-s)**2 - - -# relative permeabilty functions on subdomain 2 -def rel_perm2w(s): - # relative permeabilty wetting on subdomain2 - return intrinsic_permeability[2]*s**2 - - -def rel_perm2nw(s): - # relative permeabilty nonwetting on subdomain2 - return intrinsic_permeability[2]*(1-s)**2 - - -# relative permeabilty functions on subdomain 3 -def rel_perm3w(s): - # relative permeabilty wetting on subdomain3 - return intrinsic_permeability[3]*s**3 - - -def rel_perm3nw(s): - # relative permeabilty nonwetting on subdomain3 - return intrinsic_permeability[3]*(1-s)**3 - - -# relative permeabilty functions on subdomain 4 -def rel_perm4w(s): - # relative permeabilty wetting on subdomain4 - return intrinsic_permeability[4]*s**3 - - -def rel_perm4nw(s): - # relative permeabilty nonwetting on subdomain4 - return intrinsic_permeability[4]*(1-s)**3 - - -# relative permeabilty functions on subdomain 5 -def rel_perm5w(s): - # relative permeabilty wetting on subdomain5 - return intrinsic_permeability[5]*s**3 - - -def rel_perm5nw(s): - # relative permeabilty nonwetting on subdomain5 - return intrinsic_permeability[5]*(1-s)**3 - - -# relative permeabilty functions on subdomain 6 -def rel_perm6w(s): - # relative permeabilty wetting on subdomain6 - return intrinsic_permeability[6]*s**3 - - -def rel_perm6nw(s): - # relative permeabilty nonwetting on subdomain6 - return intrinsic_permeability[6]*(1-s)**3 - - -_rel_perm1w = ft.partial(rel_perm1w) -_rel_perm1nw = ft.partial(rel_perm1nw) - -_rel_perm2w = ft.partial(rel_perm2w) -_rel_perm2nw = ft.partial(rel_perm2nw) - -_rel_perm3w = ft.partial(rel_perm3w) -_rel_perm3nw = ft.partial(rel_perm3nw) - -_rel_perm4w = ft.partial(rel_perm4w) -_rel_perm4nw = ft.partial(rel_perm4nw) - -_rel_perm5w = ft.partial(rel_perm5w) -_rel_perm5nw = ft.partial(rel_perm5nw) - -_rel_perm6w = ft.partial(rel_perm6w) -_rel_perm6nw = ft.partial(rel_perm6nw) - -subdomain1_rel_perm = { - 'wetting': _rel_perm1w, - 'nonwetting': _rel_perm1nw +# relative permeabilties +rel_perm_definition = { + 1: {"wetting": "Spow2", + "nonwetting": "oneMinusSpow2"}, + 2: {"wetting": "Spow2", + "nonwetting": "oneMinusSpow2"}, + 3: {"wetting": "Spow3", + "nonwetting": "oneMinusSpow3"}, + 4: {"wetting": "Spow3", + "nonwetting": "oneMinusSpow3"}, + 5: {"wetting": "Spow3", + "nonwetting": "oneMinusSpow3"}, + 6: {"wetting": "Spow3", + "nonwetting": "oneMinusSpow3"}, } -subdomain2_rel_perm = { - 'wetting': _rel_perm2w, - 'nonwetting': _rel_perm2nw -} - -subdomain3_rel_perm = { - 'wetting': _rel_perm3w, - 'nonwetting': _rel_perm3nw -} - -subdomain4_rel_perm = { - 'wetting': _rel_perm4w, - 'nonwetting': _rel_perm4nw -} - -subdomain5_rel_perm = { - 'wetting': _rel_perm5w, - 'nonwetting': _rel_perm5nw -} - -subdomain6_rel_perm = { - 'wetting': _rel_perm6w, - 'nonwetting': _rel_perm6nw -} - -# dictionary of relative permeabilties on all domains. -relative_permeability = { - 1: subdomain1_rel_perm, - 2: subdomain2_rel_perm, - 3: subdomain3_rel_perm, - 4: subdomain4_rel_perm, - 5: subdomain5_rel_perm, - 6: subdomain6_rel_perm -} - - -# definition of the derivatives of the relative permeabilities -# relative permeabilty functions on subdomain 1 -def rel_perm1w_prime(s): - # relative permeabilty on subdomain1 - return intrinsic_permeability[1]*2*s - - -def rel_perm1nw_prime(s): - # relative permeabilty on subdomain1 - return -1*intrinsic_permeability[1]*2*(1-s) - - -def rel_perm2w_prime(s): - # relative permeabilty on subdomain2 - return intrinsic_permeability[2]*2*s - - -def rel_perm2nw_prime(s): - # relative permeabilty on subdomain2 - return -1*intrinsic_permeability[2]*2*(1-s) - - -# definition of the derivatives of the relative permeabilities -# relative permeabilty functions on subdomain 3 -def rel_perm3w_prime(s): - # relative permeabilty on subdomain3 - return intrinsic_permeability[3]*3*s**2 - - -def rel_perm3nw_prime(s): - # relative permeabilty on subdomain3 - return -1*intrinsic_permeability[3]*3*(1-s)**2 - - -# definition of the derivatives of the relative permeabilities -# relative permeabilty functions on subdomain 4 -def rel_perm4w_prime(s): - # relative permeabilty on subdomain4 - return intrinsic_permeability[4]*3*s**2 - - -def rel_perm4nw_prime(s): - # relative permeabilty on subdomain4 - return -1*intrinsic_permeability[4]*3*(1-s)**2 - - -# definition of the derivatives of the relative permeabilities -# relative permeabilty functions on subdomain 5 -def rel_perm5w_prime(s): - # relative permeabilty on subdomain5 - return intrinsic_permeability[5]*3*s**2 - - -def rel_perm5nw_prime(s): - # relative permeabilty on subdomain5 - return -1*intrinsic_permeability[5]*3*(1-s)**2 - - -# definition of the derivatives of the relative permeabilities -# relative permeabilty functions on subdomain 6 -def rel_perm6w_prime(s): - # relative permeabilty on subdomain6 - return intrinsic_permeability[6]*3*s**2 - - -def rel_perm6nw_prime(s): - # relative permeabilty on subdomain6 - return -1*intrinsic_permeability[6]*3*(1-s)**2 - - -_rel_perm1w_prime = ft.partial(rel_perm1w_prime) -_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime) -_rel_perm2w_prime = ft.partial(rel_perm2w_prime) -_rel_perm2nw_prime = ft.partial(rel_perm2nw_prime) -_rel_perm3w_prime = ft.partial(rel_perm3w_prime) -_rel_perm3nw_prime = ft.partial(rel_perm3nw_prime) -_rel_perm4w_prime = ft.partial(rel_perm4w_prime) -_rel_perm4nw_prime = ft.partial(rel_perm4nw_prime) -_rel_perm5w_prime = ft.partial(rel_perm5w_prime) -_rel_perm5nw_prime = ft.partial(rel_perm5nw_prime) -_rel_perm6w_prime = ft.partial(rel_perm6w_prime) -_rel_perm6nw_prime = ft.partial(rel_perm6nw_prime) - -subdomain1_rel_perm_prime = { - 'wetting': _rel_perm1w_prime, - 'nonwetting': _rel_perm1nw_prime -} - - -subdomain2_rel_perm_prime = { - 'wetting': _rel_perm2w_prime, - 'nonwetting': _rel_perm2nw_prime -} - -subdomain3_rel_perm_prime = { - 'wetting': _rel_perm3w_prime, - 'nonwetting': _rel_perm3nw_prime -} - - -subdomain4_rel_perm_prime = { - 'wetting': _rel_perm4w_prime, - 'nonwetting': _rel_perm4nw_prime -} - -subdomain5_rel_perm_prime = { - 'wetting': _rel_perm5w_prime, - 'nonwetting': _rel_perm5nw_prime -} - -subdomain6_rel_perm_prime = { - 'wetting': _rel_perm6w_prime, - 'nonwetting': _rel_perm6nw_prime -} - - -# dictionary of relative permeabilties on all domains. -ka_prime = { - 1: subdomain1_rel_perm_prime, - 2: subdomain2_rel_perm_prime, - 3: subdomain3_rel_perm_prime, - 4: subdomain4_rel_perm_prime, - 5: subdomain5_rel_perm_prime, - 6: subdomain6_rel_perm_prime, -} - - - -# S-pc-relation ship. We use the van Genuchten approach, i.e. -# pc = 1/alpha*(S^{-1/m} -1)^1/n, where we set alpha = 0, assume -# m = 1-1/n (see Helmig) and assume that residual saturation is Sw -# this function needs to be monotonically decreasing in the capillary pressure -# pc. -# Since in the richards case pc=-pw, this becomes as a function of pw a mono -# tonically INCREASING function like in our Richards-Richards paper. However -# since we unify the treatment in the code for Richards and two-phase, we need -# the same requierment -# for both cases, two-phase and Richards. -# def saturation(pc, n_index, alpha): -# # inverse capillary pressure-saturation-relationship -# return df.conditional(pc > 0, 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)), 1) -# -# # S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where -# # we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw -# def saturation_sym(pc, n_index, alpha): -# # inverse capillary pressure-saturation-relationship -# #df.conditional(pc > 0, -# return 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)) -# -# -# # derivative of S-pc relationship with respect to pc. This is needed for the -# # construction of a analytic solution. -# def saturation_sym_prime(pc, n_index, alpha): -# # inverse capillary pressure-saturation-relationship -# return -(alpha*(n_index - 1)*(alpha*pc)**(n_index - 1)) / ( (1 + (alpha*pc)**n_index)**((2*n_index - 1)/n_index) ) -## -# # note that the conditional definition of S-pc in the nonsymbolic part will be -# # incorporated in the construction of the exact solution below. -# S_pc_sym = { -# 1: ft.partial(saturation_sym, n_index=3, alpha=0.001), -# 2: ft.partial(saturation_sym, n_index=3, alpha=0.001), -# 3: ft.partial(saturation_sym, n_index=3, alpha=0.001), -# 4: ft.partial(saturation_sym, n_index=3, alpha=0.001), -# 5: ft.partial(saturation_sym, n_index=3, alpha=0.001), -# 6: ft.partial(saturation_sym, n_index=3, alpha=0.001) -# } -# -# S_pc_sym_prime = { -# 1: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), -# 2: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), -# 3: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), -# 4: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), -# 5: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), -# 6: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001) -# } -# -# sat_pressure_relationship = { -# 1: ft.partial(saturation, n_index=3, alpha=0.001), -# 2: ft.partial(saturation, n_index=3, alpha=0.001), -# 3: ft.partial(saturation, n_index=3, alpha=0.001), -# 4: ft.partial(saturation, n_index=3, alpha=0.001), -# 5: ft.partial(saturation, n_index=3, alpha=0.001), -# 6: ft.partial(saturation, n_index=3, alpha=0.001) -# } - -def saturation(pc, n_index): - # inverse capillary pressure-saturation-relationship - return df.conditional(pc > 0, 1/((1 + pc)**(1/(n_index + 1))), 1) - - -def saturation_sym(pc, n_index): - # inverse capillary pressure-saturation-relationship - return 1/((1 + pc)**(1/(n_index + 1))) - - -def saturation_sym_prime(pc, n_index): - # inverse capillary pressure-saturation-relationship - return -1/((n_index+1)*(1 + pc)**((n_index+2)/(n_index+1))) - - -S_pc_sym = { - 1: ft.partial(saturation_sym, n_index=1), - 2: ft.partial(saturation_sym, n_index=1), - 3: ft.partial(saturation_sym, n_index=2), - 4: ft.partial(saturation_sym, n_index=2), - 5: ft.partial(saturation_sym, n_index=2), - 6: ft.partial(saturation_sym, n_index=2) -} - -S_pc_sym_prime = { - 1: ft.partial(saturation_sym_prime, n_index=1), - 2: ft.partial(saturation_sym_prime, n_index=1), - 3: ft.partial(saturation_sym_prime, n_index=2), - 4: ft.partial(saturation_sym_prime, n_index=2), - 5: ft.partial(saturation_sym_prime, n_index=2), - 6: ft.partial(saturation_sym_prime, n_index=2) -} - -sat_pressure_relationship = { - 1: ft.partial(saturation, n_index=1), - 2: ft.partial(saturation, n_index=1), - 3: ft.partial(saturation, n_index=2), - 4: ft.partial(saturation, n_index=2), - 5: ft.partial(saturation, n_index=2), - 6: ft.partial(saturation, n_index=2) +rel_perm_dict = fts.generate_relative_permeability_dicts(rel_perm_definition) +relative_permeability = rel_perm_dict["ka"] +ka_prime = rel_perm_dict["ka_prime"] + +# S-pc relation +Spc_on_subdomains = { + 1: {"testSpc": {"index": 1}}, + 2: {"testSpc": {"index": 1}}, + 3: {"testSpc": {"index": 2}}, + 4: {"testSpc": {"index": 2}}, + 5: {"testSpc": {"index": 2}}, + 6: {"testSpc": {"index": 2}}, } +Spc = fts.generate_Spc_dicts(Spc_on_subdomains) +S_pc_sym = Spc["symbolic"] +S_pc_sym_prime = Spc["prime_symbolic"] +sat_pressure_relationship = Spc["dolfin"] ############################################################################### # Manufacture source expressions with sympy # @@ -870,15 +346,10 @@ p_e_sym = { 'nonwetting': (-1 -t*(1.0 + x**2) - sym.sin(2+t**2)*y**2) }, } - -pc_e_sym = dict() -for subdomain, isR in isRichards.items(): - if isR: - pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting'].copy()}) - else: - pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'].copy() - - p_e_sym[subdomain]['wetting'].copy()}) - +pc_e_sym = hlp.generate_exact_symbolic_pc( + isRichards=isRichards, + symbolic_pressure=p_e_sym + ) symbols = {"x": x, "y": y, @@ -894,6 +365,7 @@ exact_solution_example = hlp.generate_exact_solution_expressions( saturation_pressure_relationship_prime=S_pc_sym_prime, viscosity=viscosity, porosity=porosity, + intrinsic_permeability=intrinsic_permeability, relative_permeability=relative_permeability, relative_permeability_prime=ka_prime, densities=densities, @@ -905,34 +377,17 @@ exact_solution = exact_solution_example['exact_solution'] initial_condition = exact_solution_example['initial_condition'] # BOUNDARY CONDITIONS ######################################################### -# Dictionary of dirichlet boundary conditions. -dirichletBC = dict() -# similarly to the outer boundary dictionary, if a patch has no outer boundary -# None should be written instead of an expression. -# This is a bit of a brainfuck: -# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind. -# Since a domain patch can have several disjoint outer boundary parts, the -# expressions need to get an enumaration index which starts at 0. -# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of -# subdomain ind and boundary part j. -# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting'] -# return the actual expression needed for the dirichlet condition for both -# phases if present. - -# subdomain index: {outer boudary part index: {phase: expression}} -for subdomain in isRichards.keys(): - # subdomain can have no outer boundary - if outer_boundary_def_points[subdomain] is None: - dirichletBC.update({subdomain: None}) - else: - dirichletBC.update({subdomain: dict()}) - # set the dirichlet conditions to be the same code as exact solution on - # the subdomain. - for outer_boundary_ind in outer_boundary_def_points[subdomain].keys(): - dirichletBC[subdomain].update( - {outer_boundary_ind: exact_solution[subdomain]} - ) - +# Dictionary of dirichlet boundary conditions. If an exact solution case is +# used, use the hlp.generate_exact_DirichletBC() method to generate the +# Dirichlet Boundary conditions from the exact solution. +dirichletBC = hlp.generate_exact_DirichletBC( + isRichards=isRichards, + outer_boundary_def_points=outer_boundary_def_points, + exact_solution=exact_solution + ) +# If no exact solution is provided you need to provide a dictionary of boundary +# conditions. See the definiton of hlp.generate_exact_DirichletBC() to see +# the structure. # LOG FILE OUTPUT ############################################################# # read this file and print it to std out. This way the simulation can produce a @@ -941,89 +396,67 @@ f = open(thisfile, 'r') print(f.read()) f.close() - -# RUN ######################################################################### -for starttime in starttimes: - for mesh_resolution, solver_tol in resolutions.items(): - # initialise LDD simulation class - simulation = ldd.LDDsimulation( - tol=1E-14, - LDDsolver_tol=solver_tol, - debug=debugflag, - max_iter_num=max_iter_num, - FEM_Lagrange_degree=FEM_Lagrange_degree, - mesh_study=mesh_study - ) - - simulation.set_parameters( - use_case=use_case, - output_dir=output_string, - subdomain_def_points=subdomain_def_points, - isRichards=isRichards, - interface_def_points=interface_def_points, - outer_boundary_def_points=outer_boundary_def_points, - adjacent_subdomains=adjacent_subdomains, - mesh_resolution=mesh_resolution, - viscosity=viscosity, - porosity=porosity, - L=L, - lambda_param=lambda_param, - relative_permeability=relative_permeability, - saturation=sat_pressure_relationship, - starttime=starttime, - number_of_timesteps=number_of_timesteps, - number_of_timesteps_to_analyse=number_of_timesteps_to_analyse, - plot_timestep_every=plot_timestep_every, - timestep_size=timestep_size, - sources=source_expression, - initial_conditions=initial_condition, - dirichletBC_expression_strings=dirichletBC, - exact_solution=exact_solution, - densities=densities, - include_gravity=include_gravity, - gravity_acceleration=gravity_acceleration, - write2file=write_to_file, - ) - - simulation.initialise() - output_dir = simulation.output_dir - # simulation.write_exact_solution_to_xdmf() - output = simulation.run(analyse_condition=analyse_condition) - for subdomain_index, subdomain_output in output.items(): - mesh_h = subdomain_output['mesh_size'] - for phase, error_dict in subdomain_output['errornorm'].items(): - filename = output_dir \ - + "subdomain{}".format(subdomain_index)\ - + "-space-time-errornorm-{}-phase.csv".format(phase) - # for errortype, errornorm in error_dict.items(): - - # eocfile = open("eoc_filename", "a") - # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" ) - # eocfile.close() - # if subdomain.isRichards:mesh_h - data_dict = { - 'mesh_parameter': mesh_resolution, - 'mesh_h': mesh_h, - } - for norm_type, errornorm in error_dict.items(): - data_dict.update( - {norm_type: errornorm} - ) - errors = pd.DataFrame(data_dict, index=[mesh_resolution]) - # check if file exists - if os.path.isfile(filename) is True: - with open(filename, 'a') as f: - errors.to_csv( - f, - header=False, - sep='\t', - encoding='utf-8', - index=False +# MAIN ######################################################################## +if __name__ == '__main__': + # dictionary of simualation parameters to pass to the run function. + # mesh_resolution and starttime are excluded, as they get passed explicitly + # to achieve parallelisation in these parameters in these parameters for + # mesh studies etc. + simulation_parameter = { + "tol": 1E-14, + "debugflag": debugflag, + "max_iter_num": max_iter_num, + "FEM_Lagrange_degree": FEM_Lagrange_degree, + "mesh_study": mesh_study, + "use_case": use_case, + "output_string": output_string, + "subdomain_def_points": subdomain_def_points, + "isRichards": isRichards, + "interface_def_points": interface_def_points, + "outer_boundary_def_points": outer_boundary_def_points, + "adjacent_subdomains": adjacent_subdomains, + # "mesh_resolution": mesh_resolution, + "viscosity": viscosity, + "porosity": porosity, + "L": L, + "lambda_param": lambda_param, + "relative_permeability": relative_permeability, + "intrinsic_permeability": intrinsic_permeability, + "sat_pressure_relationship": sat_pressure_relationship, + # "starttime": starttime, + "number_of_timesteps": number_of_timesteps, + "number_of_timesteps_to_analyse": number_of_timesteps_to_analyse, + "plot_timestep_every": plot_timestep_every, + "timestep_size": timestep_size, + "source_expression": source_expression, + "initial_condition": initial_condition, + "dirichletBC": dirichletBC, + "exact_solution": exact_solution, + "densities": densities, + "include_gravity": include_gravity, + "gravity_acceleration": gravity_acceleration, + "write_to_file": write_to_file, + "analyse_condition": analyse_condition + } + for number_shift, starttime in starttimes.items(): + simulation_parameter.update( + {"starttime_timestep_number_shift": number_shift} + ) + for mesh_resolution, solver_tol in resolutions.items(): + simulation_parameter.update({"solver_tol": solver_tol}) + hlp.info(simulation_parameter["use_case"]) + LDDsim = mp.Process( + target=hlp.run_simulation, + args=( + simulation_parameter, + starttime, + mesh_resolution ) - else: - errors.to_csv( - filename, - sep='\t', - encoding='utf-8', - index=False ) + LDDsim.start() + # LDDsim.join() + # hlp.run_simulation( + # mesh_resolution=mesh_resolution, + # starttime=starttime, + # parameter=simulation_parameter + # ) diff --git a/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/mesh_study/TP-TP-layered_soil_with_inner_patch_mesh_study.py b/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/mesh_study/TP-TP-layered_soil_with_inner_patch_mesh_study.py index 212c5f4..6426c3f 100755 --- a/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/mesh_study/TP-TP-layered_soil_with_inner_patch_mesh_study.py +++ b/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/mesh_study/TP-TP-layered_soil_with_inner_patch_mesh_study.py @@ -3,15 +3,15 @@ This program sets up an LDD simulation """ - import dolfin as df import sympy as sym -import functools as ft +import functions as fts import LDDsimulation as ldd import helpers as hlp import datetime import os -import pandas as pd +import multiprocessing as mp +import domainSubstructuring as dss # init sympy session sym.init_printing() @@ -56,7 +56,7 @@ resolutions = { # starttimes gives a list of starttimes to run the simulation from. # The list is looped over and a simulation is run with t_0 as initial time # for each element t_0 in starttimes. -starttimes = [0.3] +starttimes = {0: 0.3} timestep_size = 0.001 number_of_timesteps = 5 @@ -160,216 +160,12 @@ output_string = "./output/{}-{}_timesteps{}_P{}".format( datestr, use_case, number_of_timesteps, FEM_Lagrange_degree ) - -# DOMAIN AND INTERFACES ####################################################### -# global domain -subdomain0_vertices = [df.Point(-1.0,-1.0), # - df.Point(1.0,-1.0),# - df.Point(1.0,1.0),# - df.Point(-1.0,1.0)] - -interface12_vertices = [df.Point(-1.0, 0.8), - df.Point(0.3, 0.8), - df.Point(0.5, 0.9), - df.Point(0.8, 0.7), - df.Point(1.0, 0.65)] - - - # interface23 -interface23_vertices = [df.Point(-1.0, 0.0), - df.Point(-0.35, 0.0), - # df.Point(6.5, 4.5), - df.Point(0.0, 0.0)] - -interface24_vertices = [interface23_vertices[2], - df.Point(0.6, 0.0), - ] - -interface25_vertices = [interface24_vertices[1], - df.Point(1.0, 0.0) - ] - - -interface32_vertices = [interface23_vertices[2], - interface23_vertices[1], - interface23_vertices[0]] - - -interface36_vertices = [df.Point(-1.0, -0.6), - df.Point(-0.6, -0.45)] - - -interface46_vertices = [interface36_vertices[1], - df.Point(0.3, -0.25)] - -interface56_vertices = [interface46_vertices[1], - df.Point(0.65, -0.6), - df.Point(1.0, -0.7)] - - - - -interface34_vertices = [interface36_vertices[1], - interface23_vertices[2]] - -# Interface 45 needs to be split, because of the shape. There can be triangles -# with two facets on the interface and this creates a rogue dof type error when -# integrating over that particular interface. Accordingly, the lambda_param -# dictionary has two entries for that interface. -interface45_vertices_a = [interface56_vertices[0], - df.Point(0.7, -0.2),#df.Point(0.7, -0.2), - ] -interface45_vertices_b = [df.Point(0.7, -0.2),#df.Point(0.7, -0.2), - interface25_vertices[0] - ] - -# interface_vertices introduces a global numbering of interfaces. -interface_def_points = [interface12_vertices, - interface23_vertices, - interface24_vertices, - interface25_vertices, - interface34_vertices, - interface36_vertices, - interface45_vertices_a, - interface45_vertices_b, - interface46_vertices, - interface56_vertices, - ] -adjacent_subdomains = [[1,2], - [2,3], - [2,4], - [2,5], - [3,4], - [3,6], - [4,5], - [4,5], - [4,6], - [5,6] - ] - -# subdomain1. -subdomain1_vertices = [interface12_vertices[0], - interface12_vertices[1], - interface12_vertices[2], - interface12_vertices[3], - interface12_vertices[4], # southern boundary, 12 interface - subdomain0_vertices[2], # eastern boundary, outer boundary - subdomain0_vertices[3]] # northern boundary, outer on_boundary - -# vertex coordinates of the outer boundaries. If it can not be specified as a -# polygon, use an entry per boundary polygon. This information is used for defining -# the Dirichlet boundary conditions. If a domain is completely internal, the -# dictionary entry should be 0: None -subdomain1_outer_boundary_verts = { - 0: [subdomain1_vertices[4], # - subdomain1_vertices[5], # eastern boundary, outer boundary - subdomain1_vertices[6], - subdomain1_vertices[0]] -} - -#subdomain1 -subdomain2_vertices = [interface23_vertices[0], - interface23_vertices[1], - interface23_vertices[2], - interface24_vertices[1], - interface25_vertices[1], # southern boundary, 23 interface - subdomain1_vertices[4], # eastern boundary, outer boundary - subdomain1_vertices[3], - subdomain1_vertices[2], - subdomain1_vertices[1], - subdomain1_vertices[0] ] # northern boundary, 12 interface - -subdomain2_outer_boundary_verts = { - 0: [subdomain2_vertices[9], - subdomain2_vertices[0]], - 1: [subdomain2_vertices[4], - subdomain2_vertices[5]] -} - - -subdomain3_vertices = [interface36_vertices[0], - interface36_vertices[1], - # interface34_vertices[0], - interface34_vertices[1], - # interface32_vertices[0], - interface32_vertices[1], - interface32_vertices[2] - ] - -subdomain3_outer_boundary_verts = { - 0: [subdomain3_vertices[4], - subdomain3_vertices[0]] -} - - -# subdomain3 -subdomain4_vertices = [interface46_vertices[0], - interface46_vertices[1], - # interface45_vertices[1], - interface45_vertices_a[1], - interface24_vertices[1], - interface24_vertices[0], - interface34_vertices[1] - ] - -subdomain4_outer_boundary_verts = None - -subdomain5_vertices = [interface56_vertices[0], - interface56_vertices[1], - interface56_vertices[2], - interface25_vertices[1], - interface25_vertices[0], - interface45_vertices_b[1], - interface45_vertices_b[0] -] - - -subdomain5_outer_boundary_verts = { - 0: [subdomain5_vertices[2], - subdomain5_vertices[3]] -} - - - -subdomain6_vertices = [subdomain0_vertices[0], - subdomain0_vertices[1], # southern boundary, outer boundary - interface56_vertices[2], - interface56_vertices[1], - interface56_vertices[0], - interface36_vertices[1], - interface36_vertices[0] - ] - -subdomain6_outer_boundary_verts = { - 0: [subdomain6_vertices[6], - subdomain6_vertices[0], - subdomain6_vertices[1], - subdomain6_vertices[2]] -} - - -subdomain_def_points = [subdomain0_vertices,# - subdomain1_vertices,# - subdomain2_vertices,# - subdomain3_vertices,# - subdomain4_vertices, - subdomain5_vertices, - subdomain6_vertices - ] - - -# if a subdomain has no outer boundary write None instead, i.e. -# i: None -# if i is the index of the inner subdomain. -outer_boundary_def_points = { - # subdomain number - 1: subdomain1_outer_boundary_verts, - 2: subdomain2_outer_boundary_verts, - 3: subdomain3_outer_boundary_verts, - 4: subdomain4_outer_boundary_verts, - 5: subdomain5_outer_boundary_verts, - 6: subdomain6_outer_boundary_verts -} +# DOMAIN AND INTERFACES ###################################################### +substructuring = dss.layeredSoilInnerPatch() +interface_def_points = substructuring.interface_def_points +adjacent_subdomains = substructuring.adjacent_subdomains +subdomain_def_points = substructuring.subdomain_def_points +outer_boundary_def_points = substructuring.outer_boundary_def_points # MODEL CONFIGURATION ######################################################### @@ -494,359 +290,40 @@ intrinsic_permeability = { 6: 0.01, #10e-3 } - -# relative permeabilty functions on subdomain 1 -def rel_perm1w(s): - # relative permeabilty wetting on subdomain1 - return intrinsic_permeability[1]*s**2 - - -def rel_perm1nw(s): - # relative permeabilty nonwetting on subdomain1 - return intrinsic_permeability[1]*(1-s)**2 - - -# relative permeabilty functions on subdomain 2 -def rel_perm2w(s): - # relative permeabilty wetting on subdomain2 - return intrinsic_permeability[2]*s**2 - - -def rel_perm2nw(s): - # relative permeabilty nonwetting on subdomain2 - return intrinsic_permeability[2]*(1-s)**2 - - -# relative permeabilty functions on subdomain 3 -def rel_perm3w(s): - # relative permeabilty wetting on subdomain3 - return intrinsic_permeability[3]*s**3 - - -def rel_perm3nw(s): - # relative permeabilty nonwetting on subdomain3 - return intrinsic_permeability[3]*(1-s)**3 - - -# relative permeabilty functions on subdomain 4 -def rel_perm4w(s): - # relative permeabilty wetting on subdomain4 - return intrinsic_permeability[4]*s**3 - - -def rel_perm4nw(s): - # relative permeabilty nonwetting on subdomain4 - return intrinsic_permeability[4]*(1-s)**3 - - -# relative permeabilty functions on subdomain 5 -def rel_perm5w(s): - # relative permeabilty wetting on subdomain5 - return intrinsic_permeability[5]*s**3 - - -def rel_perm5nw(s): - # relative permeabilty nonwetting on subdomain5 - return intrinsic_permeability[5]*(1-s)**3 - - -# relative permeabilty functions on subdomain 6 -def rel_perm6w(s): - # relative permeabilty wetting on subdomain6 - return intrinsic_permeability[6]*s**3 - - -def rel_perm6nw(s): - # relative permeabilty nonwetting on subdomain6 - return intrinsic_permeability[6]*(1-s)**3 - - -_rel_perm1w = ft.partial(rel_perm1w) -_rel_perm1nw = ft.partial(rel_perm1nw) - -_rel_perm2w = ft.partial(rel_perm2w) -_rel_perm2nw = ft.partial(rel_perm2nw) - -_rel_perm3w = ft.partial(rel_perm3w) -_rel_perm3nw = ft.partial(rel_perm3nw) - -_rel_perm4w = ft.partial(rel_perm4w) -_rel_perm4nw = ft.partial(rel_perm4nw) - -_rel_perm5w = ft.partial(rel_perm5w) -_rel_perm5nw = ft.partial(rel_perm5nw) - -_rel_perm6w = ft.partial(rel_perm6w) -_rel_perm6nw = ft.partial(rel_perm6nw) - -subdomain1_rel_perm = { - 'wetting': _rel_perm1w, - 'nonwetting': _rel_perm1nw -} - -subdomain2_rel_perm = { - 'wetting': _rel_perm2w, - 'nonwetting': _rel_perm2nw +# relative permeabilties +rel_perm_definition = { + 1: {"wetting": "Spow2", + "nonwetting": "oneMinusSpow2"}, + 2: {"wetting": "Spow2", + "nonwetting": "oneMinusSpow2"}, + 3: {"wetting": "Spow3", + "nonwetting": "oneMinusSpow3"}, + 4: {"wetting": "Spow3", + "nonwetting": "oneMinusSpow3"}, + 5: {"wetting": "Spow3", + "nonwetting": "oneMinusSpow3"}, + 6: {"wetting": "Spow3", + "nonwetting": "oneMinusSpow3"}, } -subdomain3_rel_perm = { - 'wetting': _rel_perm3w, - 'nonwetting': _rel_perm3nw -} - -subdomain4_rel_perm = { - 'wetting': _rel_perm4w, - 'nonwetting': _rel_perm4nw -} - -subdomain5_rel_perm = { - 'wetting': _rel_perm5w, - 'nonwetting': _rel_perm5nw -} - -subdomain6_rel_perm = { - 'wetting': _rel_perm6w, - 'nonwetting': _rel_perm6nw -} - -# dictionary of relative permeabilties on all domains. -relative_permeability = { - 1: subdomain1_rel_perm, - 2: subdomain2_rel_perm, - 3: subdomain3_rel_perm, - 4: subdomain4_rel_perm, - 5: subdomain5_rel_perm, - 6: subdomain6_rel_perm -} - - -# definition of the derivatives of the relative permeabilities -# relative permeabilty functions on subdomain 1 -def rel_perm1w_prime(s): - # relative permeabilty on subdomain1 - return intrinsic_permeability[1]*2*s - - -def rel_perm1nw_prime(s): - # relative permeabilty on subdomain1 - return -1*intrinsic_permeability[1]*2*(1-s) - - -def rel_perm2w_prime(s): - # relative permeabilty on subdomain2 - return intrinsic_permeability[2]*2*s - - -def rel_perm2nw_prime(s): - # relative permeabilty on subdomain2 - return -1*intrinsic_permeability[2]*2*(1-s) - - -# definition of the derivatives of the relative permeabilities -# relative permeabilty functions on subdomain 3 -def rel_perm3w_prime(s): - # relative permeabilty on subdomain3 - return intrinsic_permeability[3]*3*s**2 - - -def rel_perm3nw_prime(s): - # relative permeabilty on subdomain3 - return -1*intrinsic_permeability[3]*3*(1-s)**2 - - -# definition of the derivatives of the relative permeabilities -# relative permeabilty functions on subdomain 4 -def rel_perm4w_prime(s): - # relative permeabilty on subdomain4 - return intrinsic_permeability[4]*3*s**2 - - -def rel_perm4nw_prime(s): - # relative permeabilty on subdomain4 - return -1*intrinsic_permeability[4]*3*(1-s)**2 - - -# definition of the derivatives of the relative permeabilities -# relative permeabilty functions on subdomain 5 -def rel_perm5w_prime(s): - # relative permeabilty on subdomain5 - return intrinsic_permeability[5]*3*s**2 - - -def rel_perm5nw_prime(s): - # relative permeabilty on subdomain5 - return -1*intrinsic_permeability[5]*3*(1-s)**2 - - -# definition of the derivatives of the relative permeabilities -# relative permeabilty functions on subdomain 6 -def rel_perm6w_prime(s): - # relative permeabilty on subdomain6 - return intrinsic_permeability[6]*3*s**2 - - -def rel_perm6nw_prime(s): - # relative permeabilty on subdomain6 - return -1*intrinsic_permeability[6]*3*(1-s)**2 - - -_rel_perm1w_prime = ft.partial(rel_perm1w_prime) -_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime) -_rel_perm2w_prime = ft.partial(rel_perm2w_prime) -_rel_perm2nw_prime = ft.partial(rel_perm2nw_prime) -_rel_perm3w_prime = ft.partial(rel_perm3w_prime) -_rel_perm3nw_prime = ft.partial(rel_perm3nw_prime) -_rel_perm4w_prime = ft.partial(rel_perm4w_prime) -_rel_perm4nw_prime = ft.partial(rel_perm4nw_prime) -_rel_perm5w_prime = ft.partial(rel_perm5w_prime) -_rel_perm5nw_prime = ft.partial(rel_perm5nw_prime) -_rel_perm6w_prime = ft.partial(rel_perm6w_prime) -_rel_perm6nw_prime = ft.partial(rel_perm6nw_prime) - -subdomain1_rel_perm_prime = { - 'wetting': _rel_perm1w_prime, - 'nonwetting': _rel_perm1nw_prime -} - - -subdomain2_rel_perm_prime = { - 'wetting': _rel_perm2w_prime, - 'nonwetting': _rel_perm2nw_prime -} - -subdomain3_rel_perm_prime = { - 'wetting': _rel_perm3w_prime, - 'nonwetting': _rel_perm3nw_prime -} - - -subdomain4_rel_perm_prime = { - 'wetting': _rel_perm4w_prime, - 'nonwetting': _rel_perm4nw_prime -} - -subdomain5_rel_perm_prime = { - 'wetting': _rel_perm5w_prime, - 'nonwetting': _rel_perm5nw_prime -} - -subdomain6_rel_perm_prime = { - 'wetting': _rel_perm6w_prime, - 'nonwetting': _rel_perm6nw_prime -} - - -# dictionary of relative permeabilties on all domains. -ka_prime = { - 1: subdomain1_rel_perm_prime, - 2: subdomain2_rel_perm_prime, - 3: subdomain3_rel_perm_prime, - 4: subdomain4_rel_perm_prime, - 5: subdomain5_rel_perm_prime, - 6: subdomain6_rel_perm_prime, -} - - - -# S-pc-relation ship. We use the van Genuchten approach, i.e. -# pc = 1/alpha*(S^{-1/m} -1)^1/n, where we set alpha = 0, assume -# m = 1-1/n (see Helmig) and assume that residual saturation is Sw -# this function needs to be monotonically decreasing in the capillary pressure -# pc. -# Since in the richards case pc=-pw, this becomes as a function of pw a mono -# tonically INCREASING function like in our Richards-Richards paper. However -# since we unify the treatment in the code for Richards and two-phase, we need -# the same requierment -# for both cases, two-phase and Richards. -# def saturation(pc, n_index, alpha): -# # inverse capillary pressure-saturation-relationship -# return df.conditional(pc > 0, 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)), 1) -# -# # S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where -# # we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw -# def saturation_sym(pc, n_index, alpha): -# # inverse capillary pressure-saturation-relationship -# #df.conditional(pc > 0, -# return 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)) -# -# -# # derivative of S-pc relationship with respect to pc. This is needed for the -# # construction of a analytic solution. -# def saturation_sym_prime(pc, n_index, alpha): -# # inverse capillary pressure-saturation-relationship -# return -(alpha*(n_index - 1)*(alpha*pc)**(n_index - 1)) / ( (1 + (alpha*pc)**n_index)**((2*n_index - 1)/n_index) ) -## -# # note that the conditional definition of S-pc in the nonsymbolic part will be -# # incorporated in the construction of the exact solution below. -# S_pc_sym = { -# 1: ft.partial(saturation_sym, n_index=3, alpha=0.001), -# 2: ft.partial(saturation_sym, n_index=3, alpha=0.001), -# 3: ft.partial(saturation_sym, n_index=3, alpha=0.001), -# 4: ft.partial(saturation_sym, n_index=3, alpha=0.001), -# 5: ft.partial(saturation_sym, n_index=3, alpha=0.001), -# 6: ft.partial(saturation_sym, n_index=3, alpha=0.001) -# } -# -# S_pc_sym_prime = { -# 1: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), -# 2: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), -# 3: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), -# 4: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), -# 5: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), -# 6: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001) -# } -# -# sat_pressure_relationship = { -# 1: ft.partial(saturation, n_index=3, alpha=0.001), -# 2: ft.partial(saturation, n_index=3, alpha=0.001), -# 3: ft.partial(saturation, n_index=3, alpha=0.001), -# 4: ft.partial(saturation, n_index=3, alpha=0.001), -# 5: ft.partial(saturation, n_index=3, alpha=0.001), -# 6: ft.partial(saturation, n_index=3, alpha=0.001) -# } - -def saturation(pc, n_index): - # inverse capillary pressure-saturation-relationship - return df.conditional(pc > 0, 1/((1 + pc)**(1/(n_index + 1))), 1) - - -def saturation_sym(pc, n_index): - # inverse capillary pressure-saturation-relationship - return 1/((1 + pc)**(1/(n_index + 1))) - - -def saturation_sym_prime(pc, n_index): - # inverse capillary pressure-saturation-relationship - return -1/((n_index+1)*(1 + pc)**((n_index+2)/(n_index+1))) - - -S_pc_sym = { - 1: ft.partial(saturation_sym, n_index=1), - 2: ft.partial(saturation_sym, n_index=1), - 3: ft.partial(saturation_sym, n_index=2), - 4: ft.partial(saturation_sym, n_index=2), - 5: ft.partial(saturation_sym, n_index=2), - 6: ft.partial(saturation_sym, n_index=2) -} - -S_pc_sym_prime = { - 1: ft.partial(saturation_sym_prime, n_index=1), - 2: ft.partial(saturation_sym_prime, n_index=1), - 3: ft.partial(saturation_sym_prime, n_index=2), - 4: ft.partial(saturation_sym_prime, n_index=2), - 5: ft.partial(saturation_sym_prime, n_index=2), - 6: ft.partial(saturation_sym_prime, n_index=2) -} - -sat_pressure_relationship = { - 1: ft.partial(saturation, n_index=1), - 2: ft.partial(saturation, n_index=1), - 3: ft.partial(saturation, n_index=2), - 4: ft.partial(saturation, n_index=2), - 5: ft.partial(saturation, n_index=2), - 6: ft.partial(saturation, n_index=2) +rel_perm_dict = fts.generate_relative_permeability_dicts(rel_perm_definition) +relative_permeability = rel_perm_dict["ka"] +ka_prime = rel_perm_dict["ka_prime"] + +# S-pc relation +Spc_on_subdomains = { + 1: {"testSpc": {"index": 1}}, + 2: {"testSpc": {"index": 1}}, + 3: {"testSpc": {"index": 2}}, + 4: {"testSpc": {"index": 2}}, + 5: {"testSpc": {"index": 2}}, + 6: {"testSpc": {"index": 2}}, } +Spc = fts.generate_Spc_dicts(Spc_on_subdomains) +S_pc_sym = Spc["symbolic"] +S_pc_sym_prime = Spc["prime_symbolic"] +sat_pressure_relationship = Spc["dolfin"] ############################################################################### # Manufacture source expressions with sympy # @@ -870,15 +347,10 @@ p_e_sym = { 'nonwetting': (-1 -t*(1.0 + x**2) - sym.sin(2+t**2)*y**2) }, } - -pc_e_sym = dict() -for subdomain, isR in isRichards.items(): - if isR: - pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting'].copy()}) - else: - pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'].copy() - - p_e_sym[subdomain]['wetting'].copy()}) - +pc_e_sym = hlp.generate_exact_symbolic_pc( + isRichards=isRichards, + symbolic_pressure=p_e_sym + ) symbols = {"x": x, "y": y, @@ -894,6 +366,7 @@ exact_solution_example = hlp.generate_exact_solution_expressions( saturation_pressure_relationship_prime=S_pc_sym_prime, viscosity=viscosity, porosity=porosity, + intrinsic_permeability=intrinsic_permeability, relative_permeability=relative_permeability, relative_permeability_prime=ka_prime, densities=densities, @@ -905,34 +378,17 @@ exact_solution = exact_solution_example['exact_solution'] initial_condition = exact_solution_example['initial_condition'] # BOUNDARY CONDITIONS ######################################################### -# Dictionary of dirichlet boundary conditions. -dirichletBC = dict() -# similarly to the outer boundary dictionary, if a patch has no outer boundary -# None should be written instead of an expression. -# This is a bit of a brainfuck: -# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind. -# Since a domain patch can have several disjoint outer boundary parts, the -# expressions need to get an enumaration index which starts at 0. -# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of -# subdomain ind and boundary part j. -# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting'] -# return the actual expression needed for the dirichlet condition for both -# phases if present. - -# subdomain index: {outer boudary part index: {phase: expression}} -for subdomain in isRichards.keys(): - # subdomain can have no outer boundary - if outer_boundary_def_points[subdomain] is None: - dirichletBC.update({subdomain: None}) - else: - dirichletBC.update({subdomain: dict()}) - # set the dirichlet conditions to be the same code as exact solution on - # the subdomain. - for outer_boundary_ind in outer_boundary_def_points[subdomain].keys(): - dirichletBC[subdomain].update( - {outer_boundary_ind: exact_solution[subdomain]} - ) - +# Dictionary of dirichlet boundary conditions. If an exact solution case is +# used, use the hlp.generate_exact_DirichletBC() method to generate the +# Dirichlet Boundary conditions from the exact solution. +dirichletBC = hlp.generate_exact_DirichletBC( + isRichards=isRichards, + outer_boundary_def_points=outer_boundary_def_points, + exact_solution=exact_solution + ) +# If no exact solution is provided you need to provide a dictionary of boundary +# conditions. See the definiton of hlp.generate_exact_DirichletBC() to see +# the structure. # LOG FILE OUTPUT ############################################################# # read this file and print it to std out. This way the simulation can produce a @@ -941,89 +397,67 @@ f = open(thisfile, 'r') print(f.read()) f.close() - -# RUN ######################################################################### -for starttime in starttimes: - for mesh_resolution, solver_tol in resolutions.items(): - # initialise LDD simulation class - simulation = ldd.LDDsimulation( - tol=1E-14, - LDDsolver_tol=solver_tol, - debug=debugflag, - max_iter_num=max_iter_num, - FEM_Lagrange_degree=FEM_Lagrange_degree, - mesh_study=mesh_study - ) - - simulation.set_parameters( - use_case=use_case, - output_dir=output_string, - subdomain_def_points=subdomain_def_points, - isRichards=isRichards, - interface_def_points=interface_def_points, - outer_boundary_def_points=outer_boundary_def_points, - adjacent_subdomains=adjacent_subdomains, - mesh_resolution=mesh_resolution, - viscosity=viscosity, - porosity=porosity, - L=L, - lambda_param=lambda_param, - relative_permeability=relative_permeability, - saturation=sat_pressure_relationship, - starttime=starttime, - number_of_timesteps=number_of_timesteps, - number_of_timesteps_to_analyse=number_of_timesteps_to_analyse, - plot_timestep_every=plot_timestep_every, - timestep_size=timestep_size, - sources=source_expression, - initial_conditions=initial_condition, - dirichletBC_expression_strings=dirichletBC, - exact_solution=exact_solution, - densities=densities, - include_gravity=include_gravity, - gravity_acceleration=gravity_acceleration, - write2file=write_to_file, - ) - - simulation.initialise() - output_dir = simulation.output_dir - # simulation.write_exact_solution_to_xdmf() - output = simulation.run(analyse_condition=analyse_condition) - for subdomain_index, subdomain_output in output.items(): - mesh_h = subdomain_output['mesh_size'] - for phase, error_dict in subdomain_output['errornorm'].items(): - filename = output_dir \ - + "subdomain{}".format(subdomain_index)\ - + "-space-time-errornorm-{}-phase.csv".format(phase) - # for errortype, errornorm in error_dict.items(): - - # eocfile = open("eoc_filename", "a") - # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" ) - # eocfile.close() - # if subdomain.isRichards:mesh_h - data_dict = { - 'mesh_parameter': mesh_resolution, - 'mesh_h': mesh_h, - } - for norm_type, errornorm in error_dict.items(): - data_dict.update( - {norm_type: errornorm} - ) - errors = pd.DataFrame(data_dict, index=[mesh_resolution]) - # check if file exists - if os.path.isfile(filename) is True: - with open(filename, 'a') as f: - errors.to_csv( - f, - header=False, - sep='\t', - encoding='utf-8', - index=False +# MAIN ######################################################################## +if __name__ == '__main__': + # dictionary of simualation parameters to pass to the run function. + # mesh_resolution and starttime are excluded, as they get passed explicitly + # to achieve parallelisation in these parameters in these parameters for + # mesh studies etc. + simulation_parameter = { + "tol": 1E-14, + "debugflag": debugflag, + "max_iter_num": max_iter_num, + "FEM_Lagrange_degree": FEM_Lagrange_degree, + "mesh_study": mesh_study, + "use_case": use_case, + "output_string": output_string, + "subdomain_def_points": subdomain_def_points, + "isRichards": isRichards, + "interface_def_points": interface_def_points, + "outer_boundary_def_points": outer_boundary_def_points, + "adjacent_subdomains": adjacent_subdomains, + # "mesh_resolution": mesh_resolution, + "viscosity": viscosity, + "porosity": porosity, + "L": L, + "lambda_param": lambda_param, + "relative_permeability": relative_permeability, + "intrinsic_permeability": intrinsic_permeability, + "sat_pressure_relationship": sat_pressure_relationship, + # "starttime": starttime, + "number_of_timesteps": number_of_timesteps, + "number_of_timesteps_to_analyse": number_of_timesteps_to_analyse, + "plot_timestep_every": plot_timestep_every, + "timestep_size": timestep_size, + "source_expression": source_expression, + "initial_condition": initial_condition, + "dirichletBC": dirichletBC, + "exact_solution": exact_solution, + "densities": densities, + "include_gravity": include_gravity, + "gravity_acceleration": gravity_acceleration, + "write_to_file": write_to_file, + "analyse_condition": analyse_condition + } + for number_shift, starttime in starttimes.items(): + simulation_parameter.update( + {"starttime_timestep_number_shift": number_shift} + ) + for mesh_resolution, solver_tol in resolutions.items(): + simulation_parameter.update({"solver_tol": solver_tol}) + hlp.info(simulation_parameter["use_case"]) + LDDsim = mp.Process( + target=hlp.run_simulation, + args=( + simulation_parameter, + starttime, + mesh_resolution ) - else: - errors.to_csv( - filename, - sep='\t', - encoding='utf-8', - index=False ) + LDDsim.start() + # LDDsim.join() + # hlp.run_simulation( + # mesh_resolution=mesh_resolution, + # starttime=starttime, + # parameter=simulation_parameter + # ) -- GitLab