From 4cab014afbf8e7b79313bb2b91090acff1037424 Mon Sep 17 00:00:00 2001
From: David <forenkram@gmx.de>
Date: Tue, 30 Jun 2020 11:00:34 +0200
Subject: [PATCH] clean up TPTP 2 patch with functions module
---
.../TP-TP-2-patch-alterantive.py | 588 ++++++------------
.../TP-TP-2-patch-different-intrinsic-perm.py | 472 +++-----------
...P-2-patch-nonwetting-zero-on-subdomain1.py | 586 ++++++-----------
.../TP-TP-2-patch-same-intrinsic-perm.py | 454 +++-----------
.../TP-TP-2-patch-test.py | 467 +++-----------
5 files changed, 705 insertions(+), 1862 deletions(-)
diff --git a/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/TP-TP-2-patch-alterantive.py b/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/TP-TP-2-patch-alterantive.py
index 1df40d9..60dff0e 100755
--- a/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/TP-TP-2-patch-alterantive.py
+++ b/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/TP-TP-2-patch-alterantive.py
@@ -1,64 +1,112 @@
#!/usr/bin/python3
+"""TPTP 2 patch soil simulation.
+
+This program sets up an LDD simulation
+"""
import dolfin as df
-import mshr
-import numpy as np
import sympy as sym
-import typing as tp
-import domainPatch as dp
+import functions as fts
import LDDsimulation as ldd
-import functools as ft
import helpers as hlp
import datetime
import os
-import pandas as pd
-
-date = datetime.datetime.now()
-datestr = date.strftime("%Y-%m-%d")
-#import ufl as ufl
+import multiprocessing as mp
+import domainSubstructuring as dss
# init sympy session
sym.init_printing()
-use_case = "TP-TP-2-patch-alternative"
-solver_tol = 5E-7
-max_iter_num = 10
-FEM_Lagrange_degree = 1
-mesh_study = False
-resolutions = [20]
+# PREREQUISITS ###############################################################
+# check if output directory "./output" exists. This will be used in
+# the generation of the output string.
+if not os.path.exists('./output'):
+ os.mkdir('./output')
+ print("Directory ", './output', " created ")
+else:
+ print("Directory ", './output', " already exists. Will use as output \
+ directory")
-############ GRID #######################
-# mesh_resolution = 20
-timestep_size = 0.0001
-number_of_timesteps = 50
-# smallest possible number is 1
-plot_timestep_every = 5
-# decide how many timesteps you want analysed. Analysed means, that we write out
-# subsequent errors of the L-iteration within the timestep.
-number_of_timesteps_to_analyse = 0
-starttime = 0.0
+date = datetime.datetime.now()
+datestr = date.strftime("%Y-%m-%d")
+
+# Name of the usecase that will be printed during simulation.
+use_case = "TP-TP-2-patch-alternative-params-one"
+# The name of this very file. Needed for creating log output.
+thisfile = "TP-TP-2-patch-alternative.py"
-Lw = 0.25 #/timestep_size
-Lnw=Lw
+# GENERAL SOLVER CONFIG ######################################################
+# maximal iteration per timestep
+max_iter_num = 500
+FEM_Lagrange_degree = 1
-lambda_w = 40
-lambda_nw = 40
+# GRID AND MESH STUDY SPECIFICATIONS #########################################
+mesh_study = False
+resolutions = {
+ # 1: 1e-6,
+ # 2: 1e-6,
+ # 4: 1e-6,
+ # 8: 1e-6,
+ 16: 1e-6,
+ # 32: 1e-6,
+ # 64: 1e-6,
+ # 128: 1e-6,
+ # 256: 1e-6,
+ }
+
+# starttimes gives a list of starttimes to run the simulation from.
+# The list is looped over and a simulation is run with t_0 as initial time
+# for each element t_0 in starttimes.
+starttimes = [0.0]
+timestep_size = 0.01
+number_of_timesteps = 100
+
+# LDD scheme parameters ######################################################
+Lw1 = 0.025 #/timestep_size
+Lnw1= 0.025
+
+Lw2 = 0.025 #/timestep_size
+Lnw2= 0.025
+
+lambda_w = 4
+lambda_nw = 4
include_gravity = False
debugflag = False
analyse_condition = False
-output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}_".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol)
-
-# toggle what should be written to files
+# I/O CONFIG #################################################################
+# when number_of_timesteps is high, it might take a long time to write all
+# timesteps to disk. Therefore, you can choose to only write data of every
+# plot_timestep_every timestep to disk.
+plot_timestep_every = 1
+# Decide how many timesteps you want analysed. Analysed means, that
+# subsequent errors of the L-iteration within the timestep are written out.
+number_of_timesteps_to_analyse = 5
+
+# fine grained control over data to be written to disk in the mesh study case
+# as well as for a regular simuation for a fixed grid.
if mesh_study:
write_to_file = {
+ # output the relative errornorm (integration in space) w.r.t. an exact
+ # solution for each timestep into a csv file.
'space_errornorms': True,
+ # save the mesh and marker functions to disk
'meshes_and_markers': True,
+ # save xdmf/h5 data for each LDD iteration for timesteps determined by
+ # number_of_timesteps_to_analyse. I/O intensive!
'L_iterations_per_timestep': False,
- 'solutions': False,
- 'absolute_differences': False,
+ # save solution to xdmf/h5.
+ 'solutions': True,
+ # save absolute differences w.r.t an exact solution to xdmf/h5 file
+ # to monitor where on the domains errors happen
+ 'absolute_differences': True,
+ # analyise condition numbers for timesteps determined by
+ # number_of_timesteps_to_analyse and save them over time to csv.
'condition_numbers': analyse_condition,
- 'subsequent_errors': False
+ # output subsequent iteration errors measured in L^2 to csv for
+ # timesteps determined by number_of_timesteps_to_analyse.
+ # Usefull to monitor convergence of the acutal LDD solver.
+ 'subsequent_errors': True
}
else:
write_to_file = {
@@ -71,76 +119,19 @@ else:
'subsequent_errors': True
}
-##### Domain and Interface ####
-# global simulation domain domain
-sub_domain0_vertices = [df.Point(-1.0,-1.0), #
- df.Point(1.0,-1.0),#
- df.Point(1.0,1.0),#
- df.Point(-1.0,1.0)]
-# interface between subdomain1 and subdomain2
-interface12_vertices = [df.Point(-1.0, 0.0),
- df.Point(1.0, 0.0) ]
-# subdomain1.
-sub_domain1_vertices = [interface12_vertices[0],
- interface12_vertices[1],
- sub_domain0_vertices[2],
- sub_domain0_vertices[3] ]
-
-# vertex coordinates of the outer boundaries. If it can not be specified as a
-# polygon, use an entry per boundary polygon. This information is used for defining
-# the Dirichlet boundary conditions. If a domain is completely internal, the
-# dictionary entry should be 0: None
-subdomain1_outer_boundary_verts = {
- 0: [interface12_vertices[1],
- sub_domain0_vertices[2],
- sub_domain0_vertices[3], #
- interface12_vertices[0]]
-}
-# subdomain2
-sub_domain2_vertices = [sub_domain0_vertices[0],
- sub_domain0_vertices[1],
- interface12_vertices[1],
- interface12_vertices[0] ]
-
-subdomain2_outer_boundary_verts = {
- 0: [interface12_vertices[0], #
- sub_domain0_vertices[0],
- sub_domain0_vertices[1],
- interface12_vertices[1]]
-}
-# subdomain2_outer_boundary_verts = {
-# 0: [interface12_vertices[0], df.Point(0.0,0.0)],#
-# 1: [df.Point(0.0,0.0), df.Point(1.0,0.0)], #
-# 2: [df.Point(1.0,0.0), interface12_vertices[1]]
-# }
-# subdomain2_outer_boundary_verts = {
-# 0: None
-# }
-
-# list of subdomains given by the boundary polygon vertices.
-# Subdomains are given as a list of dolfin points forming
-# a closed polygon, such that mshr.Polygon(subdomain_def_points[i]) can be used
-# to create the subdomain. subdomain_def_points[0] contains the
-# vertices of the global simulation domain and subdomain_def_points[i] contains the
-# vertices of the subdomain i.
-subdomain_def_points = [sub_domain0_vertices,#
- sub_domain1_vertices,#
- sub_domain2_vertices]
-# in the below list, index 0 corresponds to the 12 interface which has index 1
-interface_def_points = [interface12_vertices]
-
-# if a subdomain has no outer boundary write None instead, i.e.
-# i: None
-# if i is the index of the inner subdomain.
-outer_boundary_def_points = {
- # subdomain number
- 1 : subdomain1_outer_boundary_verts,
- 2 : subdomain2_outer_boundary_verts
-}
+# OUTPUT FILE STRING #########################################################
+output_string = "./output/{}-{}_timesteps{}_P{}".format(
+ datestr, use_case, number_of_timesteps, FEM_Lagrange_degree
+ )
+
+# DOMAIN AND INTERFACE #######################################################
+substructuring = dss.twoSoilLayers()
+interface_def_points = substructuring.interface_def_points
+adjacent_subdomains = substructuring.adjacent_subdomains
+subdomain_def_points = substructuring.subdomain_def_points
+outer_boundary_def_points = substructuring.outer_boundary_def_points
-# adjacent_subdomains[i] contains the indices of the subdomains sharing the
-# interface i (i.e. given by interface_def_points[i]).
-adjacent_subdomains = [[1,2]]
+# MODEL CONFIGURATION #########################################################
isRichards = {
1: False, #
2: False
@@ -181,184 +172,37 @@ L = {#
lambda_param = {#
# subdom_num : lambda parameter for the L-scheme
- 1 : {'wetting' :lambda_w,
+ 0 : {'wetting' :lambda_w,
'nonwetting': lambda_nw},#
- 2 : {'wetting' :lambda_w,
- 'nonwetting': lambda_nw}
-}
-
-## relative permeabilty functions on subdomain 1
-def rel_perm1w(s):
- # relative permeabilty wetting on subdomain1
- return s**2
-
-def rel_perm1nw(s):
- # relative permeabilty nonwetting on subdomain1
- return (1-s)**2
-
-_rel_perm1w = ft.partial(rel_perm1w)
-_rel_perm1nw = ft.partial(rel_perm1nw)
-
-subdomain1_rel_perm = {
- 'wetting': _rel_perm1w,#
- 'nonwetting': _rel_perm1nw
-}
-## relative permeabilty functions on subdomain 2
-def rel_perm2w(s):
- # relative permeabilty wetting on subdomain2
- return s**3
-def rel_perm2nw(s):
- # relative permeabilty nonwetting on subdosym.cos(0.8*t - (0.8*x + 1/7*y))main2
- return (1-s)**3
-
-_rel_perm2w = ft.partial(rel_perm2w)
-_rel_perm2nw = ft.partial(rel_perm2nw)
-
-subdomain2_rel_perm = {
- 'wetting': _rel_perm2w,#
- 'nonwetting': _rel_perm2nw
}
-## dictionary of relative permeabilties on all domains.
-relative_permeability = {#
- 1: subdomain1_rel_perm,
- 2: subdomain2_rel_perm
+intrinsic_permeability = {
+ 1: 1,
+ 2: 1,
}
-
-# definition of the derivatives of the relative permeabilities
-# relative permeabilty functions on subdomain 1
-def rel_perm1w_prime(s):
- # relative permeabilty on subdomain1
- return 2*s
-
-def rel_perm1nw_prime(s):
- # relative permeabilty on subdomain1
- return -2*(1-s)
-
-# # definition of the derivatives of the relative permeabilities
-# # relative permeabilty functions on subdomain 1
-def rel_perm2w_prime(s):
- # relative permeabilty on subdomain1
- return 3*s**2
-
-def rel_perm2nw_prime(s):
- # relative permeabilty on subdomain1
- return -3*(1-s)**2
-
-_rel_perm1w_prime = ft.partial(rel_perm1w_prime)
-_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime)
-_rel_perm2w_prime = ft.partial(rel_perm2w_prime)
-_rel_perm2nw_prime = ft.partial(rel_perm2nw_prime)
-
-subdomain1_rel_perm_prime = {
- 'wetting': _rel_perm1w_prime,
- 'nonwetting': _rel_perm1nw_prime
-}
-
-
-subdomain2_rel_perm_prime = {
- 'wetting': _rel_perm2w_prime,
- 'nonwetting': _rel_perm2nw_prime
-}
-
-# dictionary of relative permeabilties on all domains.
-ka_prime = {
- 1: subdomain1_rel_perm_prime,
- 2: subdomain2_rel_perm_prime,
-}
-
-
-
-def saturation(pc, index):
- # inverse capillary pressure-saturation-relationship
- return df.conditional(pc > 0, 1/((1 + pc)**(1/(index + 1))), 1)
-
-
-def saturation_sym(pc, index):
- # inverse capillary pressure-saturation-relationship
- return 1/((1 + pc)**(1/(index + 1)))
-
-
-# derivative of S-pc relationship with respect to pc. This is needed for the
-# construction of a analytic solution.
-def saturation_sym_prime(pc, index):
- # inverse capillary pressure-saturation-relationship
- return -1/((index+1)*(1 + pc)**((index+2)/(index+1)))
-
-
-# note that the conditional definition of S-pc in the nonsymbolic part will be
-# incorporated in the construction of the exact solution below.
-S_pc_sym = {
- 1: ft.partial(saturation_sym, index=1),
- 2: ft.partial(saturation_sym, index=2),
- # 3: ft.partial(saturation_sym, index=2),
- # 4: ft.partial(saturation_sym, index=1)
+# RELATIVE PEMRMEABILITIES
+rel_perm_definition = {
+ 1: {"wetting": "Spow2",
+ "nonwetting": "oneMinusSpow2"},
+ 2: {"wetting": "Spow3",
+ "nonwetting": "oneMinusSpow3"},
}
-S_pc_sym_prime = {
- 1: ft.partial(saturation_sym_prime, index=1),
- 2: ft.partial(saturation_sym_prime, index=2),
- # 3: ft.partial(saturation_sym_prime, index=2),
- # 4: ft.partial(saturation_sym_prime, index=1)
-}
+rel_perm_dict = fts.generate_relative_permeability_dicts(rel_perm_definition)
+relative_permeability = rel_perm_dict["ka"]
+ka_prime = rel_perm_dict["ka_prime"]
-sat_pressure_relationship = {
- 1: ft.partial(saturation, index=1),
- 2: ft.partial(saturation, index=2),
- # 3: ft.partial(saturation, index=2),
- # 4: ft.partial(saturation, index=1)
+# S-pc relation
+Spc_on_subdomains = {
+ 1: {"testSpc": {"index": 1}},
+ 2: {"testSpc": {"index": 2}},
}
-#
-# def saturation(pc, n_index, alpha):
-# # inverse capillary pressure-saturation-relationship
-# return df.conditional(pc > 0, 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)), 1)
-#
-# # S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where
-# # we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw
-# def saturation_sym(pc, n_index, alpha):
-# # inverse capillary pressure-saturation-relationship
-# #df.conditional(pc > 0,
-# return 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index))
-#
-#
-# # derivative of S-pc relationship with respect to pc. This is needed for the
-# # construction of a analytic solution.
-# def saturation_sym_prime(pc, n_index, alpha):
-# # inverse capillary pressure-saturation-relationship
-# return -(alpha*(n_index - 1)*(alpha*pc)**(n_index - 1)) / ( (1 + (alpha*pc)**n_index)**((2*n_index - 1)/n_index) )
-#
-# # note that the conditional definition of S-pc in the nonsymbolic part will be
-# # incorporated in the construction of the exact solution below.
-# S_pc_sym = {
-# 1: ft.partial(saturation_sym, n_index=3, alpha=0.001),
-# 2: ft.partial(saturation_sym, n_index=6, alpha=0.001),
-# # 3: ft.partial(saturation_sym, n_index=3, alpha=0.001),
-# # 4: ft.partial(saturation_sym, n_index=3, alpha=0.001),
-# # 5: ft.partial(saturation_sym, n_index=3, alpha=0.001),
-# # 6: ft.partial(saturation_sym, n_index=3, alpha=0.001)
-# }
-#
-# S_pc_sym_prime = {
-# 1: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001),
-# 2: ft.partial(saturation_sym_prime, n_index=6, alpha=0.001),
-# # 3: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001),
-# # 4: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001),
-# # 5: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001),
-# # 6: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001)
-# }
-#
-# sat_pressure_relationship = {
-# 1: ft.partial(saturation, n_index=3, alpha=0.001),
-# 2: ft.partial(saturation, n_index=6, alpha=0.001),
-# # 3: ft.partial(saturation, n_index=3, alpha=0.001),
-# # 4: ft.partial(saturation, n_index=3, alpha=0.001),
-# # 5: ft.partial(saturation, n_index=3, alpha=0.001),
-# # 6: ft.partial(saturation, n_index=3, alpha=0.001)
-# }
-#
-
+Spc = fts.generate_Spc_dicts(Spc_on_subdomains)
+S_pc_sym = Spc["symbolic"]
+S_pc_sym_prime = Spc["prime_symbolic"]
+sat_pressure_relationship = Spc["dolfin"]
#############################################
# Manufacture source expressions with sympy #
@@ -373,14 +217,10 @@ p_e_sym = {
'nonwetting': -2 -t*(1 + x**2)**2 - sym.sqrt(2+t**2)*(1+y)**2*x**2*y**2},
}
-pc_e_sym = dict()
-for subdomain, isR in isRichards.items():
- if isR:
- pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting'].copy()})
- else:
- pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'].copy()
- - p_e_sym[subdomain]['wetting'].copy()})
-
+pc_e_sym = hlp.generate_exact_symbolic_pc(
+ isRichards=isRichards,
+ symbolic_pressure=p_e_sym
+ )
symbols = {"x": x,
"y": y,
@@ -396,6 +236,7 @@ exact_solution_example = hlp.generate_exact_solution_expressions(
saturation_pressure_relationship_prime=S_pc_sym_prime,
viscosity=viscosity,
porosity=porosity,
+ intrinsic_permeability=intrinsic_permeability,
relative_permeability=relative_permeability,
relative_permeability_prime=ka_prime,
densities=densities,
@@ -406,106 +247,85 @@ source_expression = exact_solution_example['source']
exact_solution = exact_solution_example['exact_solution']
initial_condition = exact_solution_example['initial_condition']
-# Dictionary of dirichlet boundary conditions.
-dirichletBC = dict()
-# similarly to the outer boundary dictionary, if a patch has no outer boundary
-# None should be written instead of an expression.
-# This is a bit of a brainfuck:
-# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind.
-# Since a domain patch can have several disjoint outer boundary parts, the
-# expressions need to get an enumaration index which starts at 0.
-# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of
-# subdomain ind and boundary part j.
-# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting']
-# return the actual expression needed for the dirichlet condition for both
-# phases if present.
-
-# subdomain index: {outer boudary part index: {phase: expression}}
-for subdomain in isRichards.keys():
- # if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None
- if outer_boundary_def_points[subdomain] is None:
- dirichletBC.update({subdomain: None})
- else:
- dirichletBC.update({subdomain: dict()})
- # set the dirichlet conditions to be the same code as exact solution on
- # the subdomain.
- for outer_boundary_ind in outer_boundary_def_points[subdomain].keys():
- dirichletBC[subdomain].update(
- {outer_boundary_ind: exact_solution[subdomain]}
- )
-
-
-# def saturation(pressure, subdomain_index):
-# # inverse capillary pressure-saturation-relationship
-# return df.conditional(pressure < 0, 1/((1 - pressure)**(1/(subdomain_index + 1))), 1)
-#
-# sa
-
-for mesh_resolution in resolutions:
- # initialise LDD simulation class
- simulation = ldd.LDDsimulation(
- tol=1E-14,
- LDDsolver_tol=solver_tol,
- debug=debugflag,
- max_iter_num=max_iter_num,
- FEM_Lagrange_degree=FEM_Lagrange_degree,
- mesh_study=mesh_study
- )
-
- simulation.set_parameters(use_case=use_case,
- output_dir=output_string,
- subdomain_def_points=subdomain_def_points,
- isRichards=isRichards,
- interface_def_points=interface_def_points,
- outer_boundary_def_points=outer_boundary_def_points,
- adjacent_subdomains=adjacent_subdomains,
- mesh_resolution=mesh_resolution,
- viscosity=viscosity,
- porosity=porosity,
- L=L,
- lambda_param=lambda_param,
- relative_permeability=relative_permeability,
- saturation=sat_pressure_relationship,
- starttime=starttime,
- number_of_timesteps=number_of_timesteps,
- number_of_timesteps_to_analyse=number_of_timesteps_to_analyse,
- plot_timestep_every=plot_timestep_every,
- timestep_size=timestep_size,
- sources=source_expression,
- initial_conditions=initial_condition,
- dirichletBC_expression_strings=dirichletBC,
- exact_solution=exact_solution,
- densities=densities,
- include_gravity=include_gravity,
- write2file=write_to_file,
- )
-
- simulation.initialise()
- output_dir = simulation.output_dir
- # simulation.write_exact_solution_to_xdmf()
- output = simulation.run(analyse_condition=analyse_condition)
- for subdomain_index, subdomain_output in output.items():
- mesh_h = subdomain_output['mesh_size']
- for phase, different_errornorms in subdomain_output['errornorm'].items():
- filename = output_dir + "subdomain{}-space-time-errornorm-{}-phase.csv".format(subdomain_index, phase)
- # for errortype, errornorm in different_errornorms.items():
-
- # eocfile = open("eoc_filename", "a")
- # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" )
- # eocfile.close()
- # if subdomain.isRichards:mesh_h
- data_dict = {
- 'mesh_parameter': mesh_resolution,
- 'mesh_h': mesh_h,
- }
- for error_type, errornorms in different_errornorms.items():
- data_dict.update(
- {error_type: errornorms}
- )
- errors = pd.DataFrame(data_dict, index=[mesh_resolution])
- # check if file exists
- if os.path.isfile(filename) == True:
- with open(filename, 'a') as f:
- errors.to_csv(f, header=False, sep='\t', encoding='utf-8', index=False)
- else:
- errors.to_csv(filename, sep='\t', encoding='utf-8', index=False)
+# BOUNDARY CONDITIONS #########################################################
+# Dictionary of dirichlet boundary conditions. If an exact solution case is
+# used, use the hlp.generate_exact_DirichletBC() method to generate the
+# Dirichlet Boundary conditions from the exact solution.
+dirichletBC = hlp.generate_exact_DirichletBC(
+ isRichards=isRichards,
+ outer_boundary_def_points=outer_boundary_def_points,
+ exact_solution=exact_solution
+ )
+# If no exact solution is provided you need to provide a dictionary of boundary
+# conditions. See the definiton of hlp.generate_exact_DirichletBC() to see
+# the structure.
+
+# LOG FILE OUTPUT #############################################################
+# read this file and print it to std out. This way the simulation can produce a
+# log file with ./TP-R-layered_soil.py | tee simulation.log
+f = open(thisfile, 'r')
+print(f.read())
+f.close()
+
+
+# MAIN ########################################################################
+if __name__ == '__main__':
+ # dictionary of simualation parameters to pass to the run function.
+ # mesh_resolution and starttime are excluded, as they get passed explicitly
+ # to achieve parallelisation in these parameters in these parameters for
+ # mesh studies etc.
+ simulation_parameter = {
+ "tol": 1E-14,
+ "debugflag": debugflag,
+ "max_iter_num": max_iter_num,
+ "FEM_Lagrange_degree": FEM_Lagrange_degree,
+ "mesh_study": mesh_study,
+ "use_case": use_case,
+ "output_string": output_string,
+ "subdomain_def_points": subdomain_def_points,
+ "isRichards": isRichards,
+ "interface_def_points": interface_def_points,
+ "outer_boundary_def_points": outer_boundary_def_points,
+ "adjacent_subdomains": adjacent_subdomains,
+ # "mesh_resolution": mesh_resolution,
+ "viscosity": viscosity,
+ "porosity": porosity,
+ "L": L,
+ "lambda_param": lambda_param,
+ "relative_permeability": relative_permeability,
+ "intrinsic_permeability": intrinsic_permeability,
+ "sat_pressure_relationship": sat_pressure_relationship,
+ # "starttime": starttime,
+ "number_of_timesteps": number_of_timesteps,
+ "number_of_timesteps_to_analyse": number_of_timesteps_to_analyse,
+ "plot_timestep_every": plot_timestep_every,
+ "timestep_size": timestep_size,
+ "source_expression": source_expression,
+ "initial_condition": initial_condition,
+ "dirichletBC": dirichletBC,
+ "exact_solution": exact_solution,
+ "densities": densities,
+ "include_gravity": include_gravity,
+ "gravity_acceleration": gravity_acceleration,
+ "write_to_file": write_to_file,
+ "analyse_condition": analyse_condition
+ }
+ for starttime in starttimes:
+ for mesh_resolution, solver_tol in resolutions.items():
+ simulation_parameter.update({"solver_tol": solver_tol})
+ hlp.info(simulation_parameter["use_case"])
+ LDDsim = mp.Process(
+ target=hlp.run_simulation,
+ args=(
+ simulation_parameter,
+ starttime,
+ mesh_resolution
+ )
+ )
+ LDDsim.start()
+ LDDsim.join()
+ # hlp.run_simulation(
+ # mesh_resolution=mesh_resolution,
+ # starttime=starttime,
+ # parameter=simulation_parameter
+ # )
diff --git a/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/TP-TP-2-patch-different-intrinsic-perm.py b/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/TP-TP-2-patch-different-intrinsic-perm.py
index d8b88de..f5f12e5 100755
--- a/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/TP-TP-2-patch-different-intrinsic-perm.py
+++ b/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/TP-TP-2-patch-different-intrinsic-perm.py
@@ -3,15 +3,15 @@
This program sets up an LDD simulation
"""
-
import dolfin as df
import sympy as sym
-import functools as ft
+import functions as fts
import LDDsimulation as ldd
import helpers as hlp
import datetime
import os
-import pandas as pd
+import multiprocessing as mp
+import domainSubstructuring as dss
# init sympy session
sym.init_printing()
@@ -119,81 +119,16 @@ else:
}
# OUTPUT FILE STRING #########################################################
-if mesh_study:
- output_string = "./output/{}-{}_timesteps{}_P{}".format(
- datestr, use_case, number_of_timesteps, FEM_Lagrange_degree
- )
-else:
- for tol in resolutions.values():
- solver_tol = tol
- output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}".format(
- datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol
- )
-
+output_string = "./output/{}-{}_timesteps{}_P{}".format(
+ datestr, use_case, number_of_timesteps, FEM_Lagrange_degree
+ )
# DOMAIN AND INTERFACE #######################################################
-# global simulation domain domain
-sub_domain0_vertices = [df.Point(-1.0, -1.0),
- df.Point(1.0, -1.0),
- df.Point(1.0, 1.0),
- df.Point(-1.0, 1.0)]
-# interface between subdomain1 and subdomain2
-interface12_vertices = [df.Point(-1.0, 0.0),
- df.Point(1.0, 0.0) ]
-# subdomain1.
-sub_domain1_vertices = [interface12_vertices[0],
- interface12_vertices[1],
- sub_domain0_vertices[2],
- sub_domain0_vertices[3]]
-
-# vertex coordinates of the outer boundaries. If it can not be specified as a
-# polygon, use an entry per boundary polygon. This information is used for defining
-# the Dirichlet boundary conditions. If a domain is completely internal, the
-# dictionary entry should be 0: None
-subdomain1_outer_boundary_verts = {
- 0: [interface12_vertices[1], #
- sub_domain0_vertices[2],
- sub_domain0_vertices[3], #
- interface12_vertices[0]]
-}
-# subdomain2
-sub_domain2_vertices = [sub_domain0_vertices[0],
- sub_domain0_vertices[1],
- interface12_vertices[1],
- interface12_vertices[0] ]
-
-subdomain2_outer_boundary_verts = {
- 0: [interface12_vertices[0], #
- sub_domain0_vertices[0],
- sub_domain0_vertices[1],
- interface12_vertices[1]]
-}
-
-# list of subdomains given by the boundary polygon vertices.
-# Subdomains are given as a list of dolfin points forming
-# a closed polygon, such that mshr.Polygon(subdomain_def_points[i]) can be used
-# to create the subdomain. subdomain_def_points[0] contains the
-# vertices of the global simulation domain and subdomain_def_points[i] contains the
-# vertices of the subdomain i.
-subdomain_def_points = [sub_domain0_vertices,#
- sub_domain1_vertices,#
- sub_domain2_vertices]
-# in the below list, index 0 corresponds to the 12 interface which has index 1
-interface_def_points = [interface12_vertices]
-
-# if a subdomain has no outer boundary write None instead, i.e.
-# i: None
-# if i is the index of the inner subdomain.
-outer_boundary_def_points = {
- # subdomain number
- 1 : subdomain1_outer_boundary_verts,
- 2 : subdomain2_outer_boundary_verts
-}
-
-# adjacent_subdomains[i] contains the indices of the subdomains sharing the
-# interface i (i.e. given by interface_def_points[i]).
-adjacent_subdomains = [[1,2]]
-
+substructuring = dss.twoSoilLayers()
+interface_def_points = substructuring.interface_def_points
+adjacent_subdomains = substructuring.adjacent_subdomains
+subdomain_def_points = substructuring.subdomain_def_points
+outer_boundary_def_points = substructuring.outer_boundary_def_points
# MODEL CONFIGURATION #########################################################
isRichards = {
@@ -246,178 +181,28 @@ intrinsic_permeability = {
2: 0.001,
}
-
-## relative permeabilty functions on subdomain 1
-def rel_perm1w(s):
- # relative permeabilty wetting on subdomain1
- return intrinsic_permeability[1]*s**2
-
-def rel_perm1nw(s):
- # relative permeabilty nonwetting on subdomain1
- return intrinsic_permeability[1]*(1-s)**2
-
-_rel_perm1w = ft.partial(rel_perm1w)
-_rel_perm1nw = ft.partial(rel_perm1nw)
-
-subdomain1_rel_perm = {
- 'wetting': _rel_perm1w,#
- 'nonwetting': _rel_perm1nw
-}
-## relative permeabilty functions on subdomain 2
-def rel_perm2w(s):
- # relative permeabilty wetting on subdomain2
- return intrinsic_permeability[2]*s**3
-def rel_perm2nw(s):
- # relative permeabilty nonwetting on subdomain2
- return intrinsic_permeability[2]*(1-s)**3
-
-_rel_perm2w = ft.partial(rel_perm2w)
-_rel_perm2nw = ft.partial(rel_perm2nw)
-
-subdomain2_rel_perm = {
- 'wetting': _rel_perm2w,#
- 'nonwetting': _rel_perm2nw
+# RELATIVE PEMRMEABILITIES
+rel_perm_definition = {
+ 1: {"wetting": "Spow2",
+ "nonwetting": "oneMinusSpow2"},
+ 2: {"wetting": "Spow3",
+ "nonwetting": "oneMinusSpow3"},
}
-## dictionary of relative permeabilties on all domains.
-relative_permeability = {#
- 1: subdomain1_rel_perm,
- 2: subdomain2_rel_perm
-}
-
-
-# definition of the derivatives of the relative permeabilities
-# relative permeabilty functions on subdomain 1
-def rel_perm1w_prime(s):
- # relative permeabilty on subdomain1
- return intrinsic_permeability[1]*2*s
+rel_perm_dict = fts.generate_relative_permeability_dicts(rel_perm_definition)
+relative_permeability = rel_perm_dict["ka"]
+ka_prime = rel_perm_dict["ka_prime"]
-def rel_perm1nw_prime(s):
- # relative permeabilty on subdomain1
- return -1*intrinsic_permeability[1]*2*(1-s)
-
-# definition of the derivatives of the relative permeabilities
-# relative permeabilty functions on subdomain 1
-def rel_perm2w_prime(s):
- # relative permeabilty on subdomain2
- return intrinsic_permeability[2]*3*s**2
-
-def rel_perm2nw_prime(s):
- # relative permeabilty on subdomain2
- return -3*intrinsic_permeability[2]*(1-s)**2
-
-_rel_perm1w_prime = ft.partial(rel_perm1w_prime)
-_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime)
-_rel_perm2w_prime = ft.partial(rel_perm2w_prime)
-_rel_perm2nw_prime = ft.partial(rel_perm2nw_prime)
-
-subdomain1_rel_perm_prime = {
- 'wetting': _rel_perm1w_prime,
- 'nonwetting': _rel_perm1nw_prime
-}
-
-
-subdomain2_rel_perm_prime = {
- 'wetting': _rel_perm2w_prime,
- 'nonwetting': _rel_perm2nw_prime
-}
-
-# dictionary of relative permeabilties on all domains.
-ka_prime = {
- 1: subdomain1_rel_perm_prime,
- 2: subdomain2_rel_perm_prime,
-}
-
-
-# def saturation1(pc, subdomain_index):
-# # inverse capillary pressure-saturation-relationship
-# return df.conditional(pc > 0, 1/((1 + pc)**(1/(subdomain_index + 1))), 1)
-#
-# def saturation2(pc, n_index, alpha):
-# # inverse capillary pressure-saturation-relationship
-# return df.conditional(pc > 0, 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)), 1)
-#
-# # S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where
-# # we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw
-# def saturation1_sym(pc, subdomain_index):
-# # inverse capillary pressure-saturation-relationship
-# return 1/((1 + pc)**(1/(subdomain_index + 1)))
-#
-#
-# def saturation2_sym(pc, n_index, alpha):
-# # inverse capillary pressure-saturation-relationship
-# #df.conditional(pc > 0,
-# return 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index))
-#
-#
-# # derivative of S-pc relationship with respect to pc. This is needed for the
-# # construction of a analytic solution.
-# def saturation1_sym_prime(pc, subdomain_index):
-# # inverse capillary pressure-saturation-relationship
-# return -(1/(subdomain_index + 1))*(1 + pc)**((-subdomain_index - 2)/(subdomain_index + 1))
-#
-#
-# def saturation2_sym_prime(pc, n_index, alpha):
-# # inverse capillary pressure-saturation-relationship
-# return -(alpha*(n_index - 1)*(alpha*pc)**(n_index - 1)) / ( (1 + (alpha*pc)**n_index)**((2*n_index - 1)/n_index) )
-#
-# # note that the conditional definition of S-pc in the nonsymbolic part will be
-# # incorporated in the construction of the exact solution below.
-# S_pc_sym = {
-# 1: ft.partial(saturation1_sym, subdomain_index = 1),
-# 2: ft.partial(saturation2_sym, n_index=3, alpha=0.001),
-# }
-#
-# S_pc_sym_prime = {
-# 1: ft.partial(saturation1_sym_prime, subdomain_index = 1),
-# 2: ft.partial(saturation2_sym_prime, n_index=3, alpha=0.001),
-# }
-#
-# sat_pressure_relationship = {
-# 1: ft.partial(saturation1, subdomain_index = 1),#,
-# 2: ft.partial(saturation2, n_index=3, alpha=0.001),
-# }
-
-def saturation(pc, index):
- # inverse capillary pressure-saturation-relationship
- return df.conditional(pc > 0, 1/((1 + pc)**(1/(index + 1))), 1)
-
-
-def saturation_sym(pc, index):
- # inverse capillary pressure-saturation-relationship
- return 1/((1 + pc)**(1/(index + 1)))
-
-
-# derivative of S-pc relationship with respect to pc. This is needed for the
-# construction of a analytic solution.
-def saturation_sym_prime(pc, index):
- # inverse capillary pressure-saturation-relationship
- return -1/((index+1)*(1 + pc)**((index+2)/(index+1)))
-
-
-# note that the conditional definition of S-pc in the nonsymbolic part will be
-# incorporated in the construction of the exact solution below.
-S_pc_sym = {
- 1: ft.partial(saturation_sym, index=1),
- 2: ft.partial(saturation_sym, index=2),
- # 3: ft.partial(saturation_sym, index=2),
- # 4: ft.partial(saturation_sym, index=1)
-}
-
-S_pc_sym_prime = {
- 1: ft.partial(saturation_sym_prime, index=1),
- 2: ft.partial(saturation_sym_prime, index=2),
- # 3: ft.partial(saturation_sym_prime, index=2),
- # 4: ft.partial(saturation_sym_prime, index=1)
-}
-
-sat_pressure_relationship = {
- 1: ft.partial(saturation, index=1),
- 2: ft.partial(saturation, index=2),
- # 3: ft.partial(saturation, index=2),
- # 4: ft.partial(saturation, index=1)
+# S-pc relation
+Spc_on_subdomains = {
+ 1: {"testSpc": {"index": 1}},
+ 2: {"testSpc": {"index": 2}},
}
+Spc = fts.generate_Spc_dicts(Spc_on_subdomains)
+S_pc_sym = Spc["symbolic"]
+S_pc_sym_prime = Spc["prime_symbolic"]
+sat_pressure_relationship = Spc["dolfin"]
###############################################################################
# Manufacture source expressions with sympy #
@@ -425,12 +210,6 @@ sat_pressure_relationship = {
x, y = sym.symbols('x[0], x[1]') # needed by UFL
t = sym.symbols('t', positive=True)
-# p_e_sym = {
-# 1: {'wetting': (-7.0 - (1.0 + t*t)*(1.0 + x*x + y*y))}, #*(1-x)**2*(1+x)**2*(1-y)**2},
-# 2: {'wetting': (-7.0 - (1.0 + t*t)*(1.0 + x*x)), #*(1-x)**2*(1+x)**2*(1+y)**2,
-# 'nonwetting': (-2-t*(1.1+y + x**2))*y**2}, #*(1-x)**2*(1+x)**2*(1+y)**2},
-# } #-y*y*(sym.sin(-2*t+2*x)*sym.sin(1/2*y-1.2*t)) - t*t*x*(0.5-y)*y*(1-x)
-
p_e_sym = {
1: {'wetting': (-6 - (1+t*t)*(1 + x*x + y*y)), #*cutoff,
'nonwetting': (-1 -t*(1.1+ y*y))}, #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2},
@@ -438,15 +217,10 @@ p_e_sym = {
'nonwetting': (-1 -t*(1.1 + y*y) - sym.sin((x*y-0.5*t)*y**2)**2)}, #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2},
}
-
-pc_e_sym = dict()
-for subdomain, isR in isRichards.items():
- if isR:
- pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting'].copy()})
- else:
- pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'].copy()
- - p_e_sym[subdomain]['wetting'].copy()})
-
+pc_e_sym = hlp.generate_exact_symbolic_pc(
+ isRichards=isRichards,
+ symbolic_pressure=p_e_sym
+ )
symbols = {"x": x,
"y": y,
@@ -462,6 +236,7 @@ exact_solution_example = hlp.generate_exact_solution_expressions(
saturation_pressure_relationship_prime=S_pc_sym_prime,
viscosity=viscosity,
porosity=porosity,
+ intrinsic_permeability=intrinsic_permeability,
relative_permeability=relative_permeability,
relative_permeability_prime=ka_prime,
densities=densities,
@@ -473,34 +248,17 @@ exact_solution = exact_solution_example['exact_solution']
initial_condition = exact_solution_example['initial_condition']
# BOUNDARY CONDITIONS #########################################################
-# Dictionary of dirichlet boundary conditions.
-dirichletBC = dict()
-# similarly to the outer boundary dictionary, if a patch has no outer boundary
-# None should be written instead of an expression.
-# This is a bit of a brainfuck:
-# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind.
-# Since a domain patch can have several disjoint outer boundary parts, the
-# expressions need to get an enumaration index which starts at 0.
-# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of
-# subdomain ind and boundary part j.
-# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting']
-# return the actual expression needed for the dirichlet condition for both
-# phases if present.
-
-# subdomain index: {outer boudary part index: {phase: expression}}
-for subdomain in isRichards.keys():
- # subdomain can have no outer boundary
- if outer_boundary_def_points[subdomain] is None:
- dirichletBC.update({subdomain: None})
- else:
- dirichletBC.update({subdomain: dict()})
- # set the dirichlet conditions to be the same code as exact solution on
- # the subdomain.
- for outer_boundary_ind in outer_boundary_def_points[subdomain].keys():
- dirichletBC[subdomain].update(
- {outer_boundary_ind: exact_solution[subdomain]}
- )
-
+# Dictionary of dirichlet boundary conditions. If an exact solution case is
+# used, use the hlp.generate_exact_DirichletBC() method to generate the
+# Dirichlet Boundary conditions from the exact solution.
+dirichletBC = hlp.generate_exact_DirichletBC(
+ isRichards=isRichards,
+ outer_boundary_def_points=outer_boundary_def_points,
+ exact_solution=exact_solution
+ )
+# If no exact solution is provided you need to provide a dictionary of boundary
+# conditions. See the definiton of hlp.generate_exact_DirichletBC() to see
+# the structure.
# LOG FILE OUTPUT #############################################################
# read this file and print it to std out. This way the simulation can produce a
@@ -510,88 +268,64 @@ print(f.read())
f.close()
-# RUN #########################################################################
-for starttime in starttimes:
- for mesh_resolution, solver_tol in resolutions.items():
- # initialise LDD simulation class
- simulation = ldd.LDDsimulation(
- tol=1E-14,
- LDDsolver_tol=solver_tol,
- debug=debugflag,
- max_iter_num=max_iter_num,
- FEM_Lagrange_degree=FEM_Lagrange_degree,
- mesh_study=mesh_study
- )
-
- simulation.set_parameters(
- use_case=use_case,
- output_dir=output_string,
- subdomain_def_points=subdomain_def_points,
- isRichards=isRichards,
- interface_def_points=interface_def_points,
- outer_boundary_def_points=outer_boundary_def_points,
- adjacent_subdomains=adjacent_subdomains,
- mesh_resolution=mesh_resolution,
- viscosity=viscosity,
- porosity=porosity,
- L=L,
- lambda_param=lambda_param,
- relative_permeability=relative_permeability,
- saturation=sat_pressure_relationship,
- starttime=starttime,
- number_of_timesteps=number_of_timesteps,
- number_of_timesteps_to_analyse=number_of_timesteps_to_analyse,
- plot_timestep_every=plot_timestep_every,
- timestep_size=timestep_size,
- sources=source_expression,
- initial_conditions=initial_condition,
- dirichletBC_expression_strings=dirichletBC,
- exact_solution=exact_solution,
- densities=densities,
- include_gravity=include_gravity,
- gravity_acceleration=gravity_acceleration,
- write2file=write_to_file,
- )
-
- simulation.initialise()
- output_dir = simulation.output_dir
- # simulation.write_exact_solution_to_xdmf()
- output = simulation.run(analyse_condition=analyse_condition)
- for subdomain_index, subdomain_output in output.items():
- mesh_h = subdomain_output['mesh_size']
- for phase, error_dict in subdomain_output['errornorm'].items():
- filename = output_dir \
- + "subdomain{}".format(subdomain_index)\
- + "-space-time-errornorm-{}-phase.csv".format(phase)
- # for errortype, errornorm in error_dict.items():
-
- # eocfile = open("eoc_filename", "a")
- # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" )
- # eocfile.close()
- # if subdomain.isRichards:mesh_h
- data_dict = {
- 'mesh_parameter': mesh_resolution,
- 'mesh_h': mesh_h,
- }
- for norm_type, errornorm in error_dict.items():
- data_dict.update(
- {norm_type: errornorm}
- )
- errors = pd.DataFrame(data_dict, index=[mesh_resolution])
- # check if file exists
- if os.path.isfile(filename) is True:
- with open(filename, 'a') as f:
- errors.to_csv(
- f,
- header=False,
- sep='\t',
- encoding='utf-8',
- index=False
+# MAIN ########################################################################
+if __name__ == '__main__':
+ # dictionary of simualation parameters to pass to the run function.
+ # mesh_resolution and starttime are excluded, as they get passed explicitly
+ # to achieve parallelisation in these parameters in these parameters for
+ # mesh studies etc.
+ simulation_parameter = {
+ "tol": 1E-14,
+ "debugflag": debugflag,
+ "max_iter_num": max_iter_num,
+ "FEM_Lagrange_degree": FEM_Lagrange_degree,
+ "mesh_study": mesh_study,
+ "use_case": use_case,
+ "output_string": output_string,
+ "subdomain_def_points": subdomain_def_points,
+ "isRichards": isRichards,
+ "interface_def_points": interface_def_points,
+ "outer_boundary_def_points": outer_boundary_def_points,
+ "adjacent_subdomains": adjacent_subdomains,
+ # "mesh_resolution": mesh_resolution,
+ "viscosity": viscosity,
+ "porosity": porosity,
+ "L": L,
+ "lambda_param": lambda_param,
+ "relative_permeability": relative_permeability,
+ "intrinsic_permeability": intrinsic_permeability,
+ "sat_pressure_relationship": sat_pressure_relationship,
+ # "starttime": starttime,
+ "number_of_timesteps": number_of_timesteps,
+ "number_of_timesteps_to_analyse": number_of_timesteps_to_analyse,
+ "plot_timestep_every": plot_timestep_every,
+ "timestep_size": timestep_size,
+ "source_expression": source_expression,
+ "initial_condition": initial_condition,
+ "dirichletBC": dirichletBC,
+ "exact_solution": exact_solution,
+ "densities": densities,
+ "include_gravity": include_gravity,
+ "gravity_acceleration": gravity_acceleration,
+ "write_to_file": write_to_file,
+ "analyse_condition": analyse_condition
+ }
+ for starttime in starttimes:
+ for mesh_resolution, solver_tol in resolutions.items():
+ simulation_parameter.update({"solver_tol": solver_tol})
+ hlp.info(simulation_parameter["use_case"])
+ LDDsim = mp.Process(
+ target=hlp.run_simulation,
+ args=(
+ simulation_parameter,
+ starttime,
+ mesh_resolution
)
- else:
- errors.to_csv(
- filename,
- sep='\t',
- encoding='utf-8',
- index=False
)
+ LDDsim.start()
+ LDDsim.join()
+ # hlp.run_simulation(
+ # mesh_resolution=mesh_resolution,
+ # starttime=starttime,
+ # parameter=simulation_parameter
+ # )
diff --git a/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/TP-TP-2-patch-nonwetting-zero-on-subdomain1.py b/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/TP-TP-2-patch-nonwetting-zero-on-subdomain1.py
index de6c451..886197e 100755
--- a/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/TP-TP-2-patch-nonwetting-zero-on-subdomain1.py
+++ b/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/TP-TP-2-patch-nonwetting-zero-on-subdomain1.py
@@ -1,78 +1,112 @@
#!/usr/bin/python3
+"""TPTP 2 patch soil simulation.
+
+This program sets up an LDD simulation
+"""
import dolfin as df
-import mshr
-import numpy as np
import sympy as sym
-import typing as tp
-import domainPatch as dp
+import functions as fts
import LDDsimulation as ldd
-import functools as ft
import helpers as hlp
import datetime
import os
-import pandas as pd
+import multiprocessing as mp
+import domainSubstructuring as dss
+
+# init sympy session
+sym.init_printing()
+
+# PREREQUISITS ###############################################################
+# check if output directory "./output" exists. This will be used in
+# the generation of the output string.
+if not os.path.exists('./output'):
+ os.mkdir('./output')
+ print("Directory ", './output', " created ")
+else:
+ print("Directory ", './output', " already exists. Will use as output \
+ directory")
date = datetime.datetime.now()
datestr = date.strftime("%Y-%m-%d")
-#import ufl as ufl
-# init sympy session
-sym.init_printing()
+# Name of the usecase that will be printed during simulation.
+use_case = "TP-TP-2-patch-nonwetting-zero-on-subdomain1-params-one"
+# The name of this very file. Needed for creating log output.
+thisfile = "TP-TP-2-patch-nonwetting-zero-on-subdomain1.py"
-use_case = "TP-TP-2-patch-nonwetting-zero-on-subdomain1"
-# solver_tol = 5E-7
+# GENERAL SOLVER CONFIG ######################################################
+# maximal iteration per timestep
max_iter_num = 1000
FEM_Lagrange_degree = 1
+
+# GRID AND MESH STUDY SPECIFICATIONS #########################################
mesh_study = False
resolutions = {
- # 1: 1e-7, # h=2
- # 2: 2e-5, # h=1.1180
- # 4: 1e-6, # h=0.5590
- # 8: 1e-6, # h=0.2814
- # 16: 5e-7, # h=0.1412
- 32: 5e-7,
- # 64: 5e-7,
- # 128: 5e-7
+ # 1: 1e-6,
+ # 2: 1e-6,
+ # 4: 1e-6,
+ # 8: 1e-6,
+ 16: 1e-6,
+ # 32: 1e-6,
+ # 64: 1e-6,
+ # 128: 1e-6,
+ # 256: 1e-6,
}
-
-############ GRID #######################
-# mesh_resolution = 20
+# starttimes gives a list of starttimes to run the simulation from.
+# The list is looped over and a simulation is run with t_0 as initial time
+# for each element t_0 in starttimes.
+starttimes = [0.0]
timestep_size = 0.005
number_of_timesteps = 250
-plot_timestep_every = 1
-# decide how many timesteps you want analysed. Analysed means, that we write out
-# subsequent errors of the L-iteration within the timestep.
-number_of_timesteps_to_analyse = 5
-starttime = 0.0
-Lw = 0.05 #/timestep_size
-Lnw=Lw
+# LDD scheme parameters ######################################################
+Lw1 = 0.05 #/timestep_size
+Lnw1= 0.05
+
+Lw2 = 0.05 #/timestep_size
+Lnw2= 0.05
lambda_w = 40
lambda_nw = 40
+
include_gravity = False
debugflag = False
-analyse_condition = True
-
-if mesh_study:
- output_string = "./output/{}-{}_timesteps{}_P{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree)
-else:
- for tol in resolutions.values():
- solver_tol = tol
- output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol)
+analyse_condition = False
+# I/O CONFIG #################################################################
+# when number_of_timesteps is high, it might take a long time to write all
+# timesteps to disk. Therefore, you can choose to only write data of every
+# plot_timestep_every timestep to disk.
+plot_timestep_every = 1
+# Decide how many timesteps you want analysed. Analysed means, that
+# subsequent errors of the L-iteration within the timestep are written out.
+number_of_timesteps_to_analyse = 5
-# toggle what should be written to files
+# fine grained control over data to be written to disk in the mesh study case
+# as well as for a regular simuation for a fixed grid.
if mesh_study:
write_to_file = {
+ # output the relative errornorm (integration in space) w.r.t. an exact
+ # solution for each timestep into a csv file.
'space_errornorms': True,
+ # save the mesh and marker functions to disk
'meshes_and_markers': True,
+ # save xdmf/h5 data for each LDD iteration for timesteps determined by
+ # number_of_timesteps_to_analyse. I/O intensive!
'L_iterations_per_timestep': False,
- 'solutions': False,
- 'absolute_differences': False,
+ # save solution to xdmf/h5.
+ 'solutions': True,
+ # save absolute differences w.r.t an exact solution to xdmf/h5 file
+ # to monitor where on the domains errors happen
+ 'absolute_differences': True,
+ # analyise condition numbers for timesteps determined by
+ # number_of_timesteps_to_analyse and save them over time to csv.
'condition_numbers': analyse_condition,
- 'subsequent_errors': False
+ # output subsequent iteration errors measured in L^2 to csv for
+ # timesteps determined by number_of_timesteps_to_analyse.
+ # Usefull to monitor convergence of the acutal LDD solver.
+ 'subsequent_errors': True
}
else:
write_to_file = {
@@ -85,76 +119,19 @@ else:
'subsequent_errors': True
}
-##### Domain and Interface ####
-# global simulation domain domain
-sub_domain0_vertices = [df.Point(-1.0,-1.0), #
- df.Point(1.0,-1.0),#
- df.Point(1.0,1.0),#
- df.Point(-1.0,1.0)]
-# interface between subdomain1 and subdomain2
-interface12_vertices = [df.Point(-1.0, 0.0),
- df.Point(1.0, 0.0) ]
-# subdomain1.
-sub_domain1_vertices = [interface12_vertices[0],
- interface12_vertices[1],
- sub_domain0_vertices[2],
- sub_domain0_vertices[3] ]
-
-# vertex coordinates of the outer boundaries. If it can not be specified as a
-# polygon, use an entry per boundary polygon. This information is used for defining
-# the Dirichlet boundary conditions. If a domain is completely internal, the
-# dictionary entry should be 0: None
-subdomain1_outer_boundary_verts = {
- 0: [interface12_vertices[1],
- sub_domain0_vertices[2],
- sub_domain0_vertices[3], #
- interface12_vertices[0]]
-}
-# subdomain2
-sub_domain2_vertices = [sub_domain0_vertices[0],
- sub_domain0_vertices[1],
- interface12_vertices[1],
- interface12_vertices[0] ]
-
-subdomain2_outer_boundary_verts = {
- 0: [interface12_vertices[0], #
- sub_domain0_vertices[0],
- sub_domain0_vertices[1],
- interface12_vertices[1]]
-}
-# subdomain2_outer_boundary_verts = {
-# 0: [interface12_vertices[0], df.Point(0.0,0.0)],#
-# 1: [df.Point(0.0,0.0), df.Point(1.0,0.0)], #
-# 2: [df.Point(1.0,0.0), interface12_vertices[1]]
-# }
-# subdomain2_outer_boundary_verts = {
-# 0: None
-# }
-
-# list of subdomains given by the boundary polygon vertices.
-# Subdomains are given as a list of dolfin points forming
-# a closed polygon, such that mshr.Polygon(subdomain_def_points[i]) can be used
-# to create the subdomain. subdomain_def_points[0] contains the
-# vertices of the global simulation domain and subdomain_def_points[i] contains the
-# vertices of the subdomain i.
-subdomain_def_points = [sub_domain0_vertices,#
- sub_domain1_vertices,#
- sub_domain2_vertices]
-# in the below list, index 0 corresponds to the 12 interface which has index 1
-interface_def_points = [interface12_vertices]
-
-# if a subdomain has no outer boundary write None instead, i.e.
-# i: None
-# if i is the index of the inner subdomain.
-outer_boundary_def_points = {
- # subdomain number
- 1 : subdomain1_outer_boundary_verts,
- 2 : subdomain2_outer_boundary_verts
-}
+# OUTPUT FILE STRING #########################################################
+output_string = "./output/{}-{}_timesteps{}_P{}".format(
+ datestr, use_case, number_of_timesteps, FEM_Lagrange_degree
+ )
-# adjacent_subdomains[i] contains the indices of the subdomains sharing the
-# interface i (i.e. given by interface_def_points[i]).
-adjacent_subdomains = [[1,2]]
+# DOMAIN AND INTERFACE #######################################################
+substructuring = dss.twoSoilLayers()
+interface_def_points = substructuring.interface_def_points
+adjacent_subdomains = substructuring.adjacent_subdomains
+subdomain_def_points = substructuring.subdomain_def_points
+outer_boundary_def_points = substructuring.outer_boundary_def_points
+
+# MODEL CONFIGURATION #########################################################
isRichards = {
1: False, #
2: False
@@ -193,187 +170,39 @@ L = {#
'nonwetting': Lnw}
}
-
lambda_param = {#
# subdom_num : lambda parameter for the L-scheme
- 1 : {'wetting' :lambda_w,
+ 0 : {'wetting' :lambda_w,
'nonwetting': lambda_nw},#
- 2 : {'wetting' :lambda_w,
- 'nonwetting': lambda_nw}
-}
-
-## relative permeabilty functions on subdomain 1
-def rel_perm1w(s):
- # relative permeabilty wetting on subdomain1
- return s**2
-
-def rel_perm1nw(s):
- # relative permeabilty nonwetting on subdomain1
- return (1-s)**2
-
-_rel_perm1w = ft.partial(rel_perm1w)
-_rel_perm1nw = ft.partial(rel_perm1nw)
-
-subdomain1_rel_perm = {
- 'wetting': _rel_perm1w,#
- 'nonwetting': _rel_perm1nw
-}
-## relative permeabilty functions on subdomain 2
-def rel_perm2w(s):
- # relative permeabilty wetting on subdomain2
- return s**3
-def rel_perm2nw(s):
- # relative permeabilty nonwetting on subdosym.cos(0.8*t - (0.8*x + 1/7*y))main2
- return (1-s)**3
-
-_rel_perm2w = ft.partial(rel_perm2w)
-_rel_perm2nw = ft.partial(rel_perm2nw)
-
-subdomain2_rel_perm = {
- 'wetting': _rel_perm2w,#
- 'nonwetting': _rel_perm2nw
-}
-
-## dictionary of relative permeabilties on all domains.
-relative_permeability = {#
- 1: subdomain1_rel_perm,
- 2: subdomain2_rel_perm
-}
-
-
-# definition of the derivatives of the relative permeabilities
-# relative permeabilty functions on subdomain 1
-def rel_perm1w_prime(s):
- # relative permeabilty on subdomain1
- return 2*s
-
-def rel_perm1nw_prime(s):
- # relative permeabilty on subdomain1
- return -2*(1-s)
-
-# # definition of the derivatives of the relative permeabilities
-# # relative permeabilty functions on subdomain 1
-def rel_perm2w_prime(s):
- # relative permeabilty on subdomain1
- return 3*s**2
-
-def rel_perm2nw_prime(s):
- # relative permeabilty on subdomain1
- return -3*(1-s)**2
-
-_rel_perm1w_prime = ft.partial(rel_perm1w_prime)
-_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime)
-_rel_perm2w_prime = ft.partial(rel_perm2w_prime)
-_rel_perm2nw_prime = ft.partial(rel_perm2nw_prime)
-
-subdomain1_rel_perm_prime = {
- 'wetting': _rel_perm1w_prime,
- 'nonwetting': _rel_perm1nw_prime
-}
-
-
-subdomain2_rel_perm_prime = {
- 'wetting': _rel_perm2w_prime,
- 'nonwetting': _rel_perm2nw_prime
}
-# dictionary of relative permeabilties on all domains.
-ka_prime = {
- 1: subdomain1_rel_perm_prime,
- 2: subdomain2_rel_perm_prime,
+intrinsic_permeability = {
+ 1: 1,
+ 2: 1,
}
-
-
-def saturation(pc, index):
- # inverse capillary pressure-saturation-relationship
- return df.conditional(pc > 0, 1/((1 + pc)**(1/(index + 1))), 1)
-
-
-def saturation_sym(pc, index):
- # inverse capillary pressure-saturation-relationship
- return 1/((1 + pc)**(1/(index + 1)))
-
-
-# derivative of S-pc relationship with respect to pc. This is needed for the
-# construction of a analytic solution.
-def saturation_sym_prime(pc, index):
- # inverse capillary pressure-saturation-relationship
- return -1/((index+1)*(1 + pc)**((index+2)/(index+1)))
-
-
-# note that the conditional definition of S-pc in the nonsymbolic part will be
-# incorporated in the construction of the exact solution below.
-S_pc_sym = {
- 1: ft.partial(saturation_sym, index=1),
- 2: ft.partial(saturation_sym, index=2),
- # 3: ft.partial(saturation_sym, index=2),
- # 4: ft.partial(saturation_sym, index=1)
+# RELATIVE PEMRMEABILITIES
+rel_perm_definition = {
+ 1: {"wetting": "Spow2",
+ "nonwetting": "oneMinusSpow2"},
+ 2: {"wetting": "Spow3",
+ "nonwetting": "oneMinusSpow3"},
}
-S_pc_sym_prime = {
- 1: ft.partial(saturation_sym_prime, index=1),
- 2: ft.partial(saturation_sym_prime, index=2),
- # 3: ft.partial(saturation_sym_prime, index=2),
- # 4: ft.partial(saturation_sym_prime, index=1)
-}
+rel_perm_dict = fts.generate_relative_permeability_dicts(rel_perm_definition)
+relative_permeability = rel_perm_dict["ka"]
+ka_prime = rel_perm_dict["ka_prime"]
-sat_pressure_relationship = {
- 1: ft.partial(saturation, index=1),
- 2: ft.partial(saturation, index=2),
- # 3: ft.partial(saturation, index=2),
- # 4: ft.partial(saturation, index=1)
+# S-pc relation
+Spc_on_subdomains = {
+ 1: {"testSpc": {"index": 1}},
+ 2: {"testSpc": {"index": 2}},
}
-#
-# def saturation(pc, n_index, alpha):
-# # inverse capillary pressure-saturation-relationship
-# return df.conditional(pc > 0, 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)), 1)
-#
-# # S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where
-# # we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw
-# def saturation_sym(pc, n_index, alpha):
-# # inverse capillary pressure-saturation-relationship
-# #df.conditional(pc > 0,
-# return 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index))
-#
-#
-# # derivative of S-pc relationship with respect to pc. This is needed for the
-# # construction of a analytic solution.
-# def saturation_sym_prime(pc, n_index, alpha):
-# # inverse capillary pressure-saturation-relationship
-# return -(alpha*(n_index - 1)*(alpha*pc)**(n_index - 1)) / ( (1 + (alpha*pc)**n_index)**((2*n_index - 1)/n_index) )
-#
-# # note that the conditional definition of S-pc in the nonsymbolic part will be
-# # incorporated in the construction of the exact solution below.
-# S_pc_sym = {
-# 1: ft.partial(saturation_sym, n_index=3, alpha=0.001),
-# 2: ft.partial(saturation_sym, n_index=6, alpha=0.001),
-# # 3: ft.partial(saturation_sym, n_index=3, alpha=0.001),
-# # 4: ft.partial(saturation_sym, n_index=3, alpha=0.001),
-# # 5: ft.partial(saturation_sym, n_index=3, alpha=0.001),
-# # 6: ft.partial(saturation_sym, n_index=3, alpha=0.001)
-# }
-#
-# S_pc_sym_prime = {
-# 1: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001),
-# 2: ft.partial(saturation_sym_prime, n_index=6, alpha=0.001),
-# # 3: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001),
-# # 4: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001),
-# # 5: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001),
-# # 6: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001)
-# }
-#
-# sat_pressure_relationship = {
-# 1: ft.partial(saturation, n_index=3, alpha=0.001),
-# 2: ft.partial(saturation, n_index=6, alpha=0.001),
-# # 3: ft.partial(saturation, n_index=3, alpha=0.001),
-# # 4: ft.partial(saturation, n_index=3, alpha=0.001),
-# # 5: ft.partial(saturation, n_index=3, alpha=0.001),
-# # 6: ft.partial(saturation, n_index=3, alpha=0.001)
-# }
-#
-
+Spc = fts.generate_Spc_dicts(Spc_on_subdomains)
+S_pc_sym = Spc["symbolic"]
+S_pc_sym_prime = Spc["prime_symbolic"]
+sat_pressure_relationship = Spc["dolfin"]
#############################################
# Manufacture source expressions with sympy #
@@ -388,15 +217,10 @@ p_e_sym = {
'nonwetting': (-1-t*(1.1+y + x**2))*y**3}, #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2},
}
-
-pc_e_sym = dict()
-for subdomain, isR in isRichards.items():
- if isR:
- pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting'].copy()})
- else:
- pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'].copy()
- - p_e_sym[subdomain]['wetting'].copy()})
-
+pc_e_sym = hlp.generate_exact_symbolic_pc(
+ isRichards=isRichards,
+ symbolic_pressure=p_e_sym
+ )
symbols = {"x": x,
"y": y,
@@ -412,6 +236,7 @@ exact_solution_example = hlp.generate_exact_solution_expressions(
saturation_pressure_relationship_prime=S_pc_sym_prime,
viscosity=viscosity,
porosity=porosity,
+ intrinsic_permeability=intrinsic_permeability,
relative_permeability=relative_permeability,
relative_permeability_prime=ka_prime,
densities=densities,
@@ -422,106 +247,85 @@ source_expression = exact_solution_example['source']
exact_solution = exact_solution_example['exact_solution']
initial_condition = exact_solution_example['initial_condition']
-# Dictionary of dirichlet boundary conditions.
-dirichletBC = dict()
-# similarly to the outer boundary dictionary, if a patch has no outer boundary
-# None should be written instead of an expression.
-# This is a bit of a brainfuck:
-# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind.
-# Since a domain patch can have several disjoint outer boundary parts, the
-# expressions need to get an enumaration index which starts at 0.
-# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of
-# subdomain ind and boundary part j.
-# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting']
-# return the actual expression needed for the dirichlet condition for both
-# phases if present.
-
-# subdomain index: {outer boudary part index: {phase: expression}}
-for subdomain in isRichards.keys():
- # if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None
- if outer_boundary_def_points[subdomain] is None:
- dirichletBC.update({subdomain: None})
- else:
- dirichletBC.update({subdomain: dict()})
- # set the dirichlet conditions to be the same code as exact solution on
- # the subdomain.
- for outer_boundary_ind in outer_boundary_def_points[subdomain].keys():
- dirichletBC[subdomain].update(
- {outer_boundary_ind: exact_solution[subdomain]}
- )
-
-
-# def saturation(pressure, subdomain_index):
-# # inverse capillary pressure-saturation-relationship
-# return df.conditional(pressure < 0, 1/((1 - pressure)**(1/(subdomain_index + 1))), 1)
-#
-# sa
-
-for mesh_resolution, solver_tol in resolutions.items():
- # initialise LDD simulation class
- simulation = ldd.LDDsimulation(
- tol=1E-14,
- LDDsolver_tol=solver_tol,
- debug=debugflag,
- max_iter_num=max_iter_num,
- FEM_Lagrange_degree=FEM_Lagrange_degree,
- mesh_study=mesh_study
- )
-
- simulation.set_parameters(use_case=use_case,
- output_dir=output_string,
- subdomain_def_points=subdomain_def_points,
- isRichards=isRichards,
- interface_def_points=interface_def_points,
- outer_boundary_def_points=outer_boundary_def_points,
- adjacent_subdomains=adjacent_subdomains,
- mesh_resolution=mesh_resolution,
- viscosity=viscosity,
- porosity=porosity,
- L=L,
- lambda_param=lambda_param,
- relative_permeability=relative_permeability,
- saturation=sat_pressure_relationship,
- starttime=starttime,
- number_of_timesteps=number_of_timesteps,
- number_of_timesteps_to_analyse=number_of_timesteps_to_analyse,
- plot_timestep_every=plot_timestep_every,
- timestep_size=timestep_size,
- sources=source_expression,
- initial_conditions=initial_condition,
- dirichletBC_expression_strings=dirichletBC,
- exact_solution=exact_solution,
- densities=densities,
- include_gravity=include_gravity,
- write2file=write_to_file,
- )
-
- simulation.initialise()
- output_dir = simulation.output_dir
- # simulation.write_exact_solution_to_xdmf()
- output = simulation.run(analyse_condition=analyse_condition)
- for subdomain_index, subdomain_output in output.items():
- mesh_h = subdomain_output['mesh_size']
- for phase, different_errornorms in subdomain_output['errornorm'].items():
- filename = output_dir + "subdomain{}-space-time-errornorm-{}-phase.csv".format(subdomain_index, phase)
- # for errortype, errornorm in different_errornorms.items():
-
- # eocfile = open("eoc_filename", "a")
- # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" )
- # eocfile.close()
- # if subdomain.isRichards:mesh_h
- data_dict = {
- 'mesh_parameter': mesh_resolution,
- 'mesh_h': mesh_h,
- }
- for error_type, errornorms in different_errornorms.items():
- data_dict.update(
- {error_type: errornorms}
- )
- errors = pd.DataFrame(data_dict, index=[mesh_resolution])
- # check if file exists
- if os.path.isfile(filename) == True:
- with open(filename, 'a') as f:
- errors.to_csv(f, header=False, sep='\t', encoding='utf-8', index=False)
- else:
- errors.to_csv(filename, sep='\t', encoding='utf-8', index=False)
+# BOUNDARY CONDITIONS #########################################################
+# Dictionary of dirichlet boundary conditions. If an exact solution case is
+# used, use the hlp.generate_exact_DirichletBC() method to generate the
+# Dirichlet Boundary conditions from the exact solution.
+dirichletBC = hlp.generate_exact_DirichletBC(
+ isRichards=isRichards,
+ outer_boundary_def_points=outer_boundary_def_points,
+ exact_solution=exact_solution
+ )
+# If no exact solution is provided you need to provide a dictionary of boundary
+# conditions. See the definiton of hlp.generate_exact_DirichletBC() to see
+# the structure.
+
+# LOG FILE OUTPUT #############################################################
+# read this file and print it to std out. This way the simulation can produce a
+# log file with ./TP-R-layered_soil.py | tee simulation.log
+f = open(thisfile, 'r')
+print(f.read())
+f.close()
+
+
+# MAIN ########################################################################
+if __name__ == '__main__':
+ # dictionary of simualation parameters to pass to the run function.
+ # mesh_resolution and starttime are excluded, as they get passed explicitly
+ # to achieve parallelisation in these parameters in these parameters for
+ # mesh studies etc.
+ simulation_parameter = {
+ "tol": 1E-14,
+ "debugflag": debugflag,
+ "max_iter_num": max_iter_num,
+ "FEM_Lagrange_degree": FEM_Lagrange_degree,
+ "mesh_study": mesh_study,
+ "use_case": use_case,
+ "output_string": output_string,
+ "subdomain_def_points": subdomain_def_points,
+ "isRichards": isRichards,
+ "interface_def_points": interface_def_points,
+ "outer_boundary_def_points": outer_boundary_def_points,
+ "adjacent_subdomains": adjacent_subdomains,
+ # "mesh_resolution": mesh_resolution,
+ "viscosity": viscosity,
+ "porosity": porosity,
+ "L": L,
+ "lambda_param": lambda_param,
+ "relative_permeability": relative_permeability,
+ "intrinsic_permeability": intrinsic_permeability,
+ "sat_pressure_relationship": sat_pressure_relationship,
+ # "starttime": starttime,
+ "number_of_timesteps": number_of_timesteps,
+ "number_of_timesteps_to_analyse": number_of_timesteps_to_analyse,
+ "plot_timestep_every": plot_timestep_every,
+ "timestep_size": timestep_size,
+ "source_expression": source_expression,
+ "initial_condition": initial_condition,
+ "dirichletBC": dirichletBC,
+ "exact_solution": exact_solution,
+ "densities": densities,
+ "include_gravity": include_gravity,
+ "gravity_acceleration": gravity_acceleration,
+ "write_to_file": write_to_file,
+ "analyse_condition": analyse_condition
+ }
+ for starttime in starttimes:
+ for mesh_resolution, solver_tol in resolutions.items():
+ simulation_parameter.update({"solver_tol": solver_tol})
+ hlp.info(simulation_parameter["use_case"])
+ LDDsim = mp.Process(
+ target=hlp.run_simulation,
+ args=(
+ simulation_parameter,
+ starttime,
+ mesh_resolution
+ )
+ )
+ LDDsim.start()
+ LDDsim.join()
+ # hlp.run_simulation(
+ # mesh_resolution=mesh_resolution,
+ # starttime=starttime,
+ # parameter=simulation_parameter
+ # )
diff --git a/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/TP-TP-2-patch-same-intrinsic-perm.py b/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/TP-TP-2-patch-same-intrinsic-perm.py
index 4178c0f..c84b6be 100755
--- a/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/TP-TP-2-patch-same-intrinsic-perm.py
+++ b/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/TP-TP-2-patch-same-intrinsic-perm.py
@@ -3,16 +3,15 @@
This program sets up an LDD simulation
"""
-
import dolfin as df
import sympy as sym
-import functools as ft
+import functions as fts
import LDDsimulation as ldd
import helpers as hlp
import datetime
import os
-import pandas as pd
-
+import multiprocessing as mp
+import domainSubstructuring as dss
# init sympy session
sym.init_printing()
@@ -124,70 +123,12 @@ output_string = "./output/{}-{}_timesteps{}_P{}".format(
datestr, use_case, number_of_timesteps, FEM_Lagrange_degree
)
-
# DOMAIN AND INTERFACE #######################################################
-# global simulation domain domain
-sub_domain0_vertices = [df.Point(-1.0, -1.0),
- df.Point(1.0, -1.0),
- df.Point(1.0, 1.0),
- df.Point(-1.0, 1.0)]
-# interface between subdomain1 and subdomain2
-interface12_vertices = [df.Point(-1.0, 0.0),
- df.Point(1.0, 0.0) ]
-# subdomain1.
-sub_domain1_vertices = [interface12_vertices[0],
- interface12_vertices[1],
- sub_domain0_vertices[2],
- sub_domain0_vertices[3]]
-
-# vertex coordinates of the outer boundaries. If it can not be specified as a
-# polygon, use an entry per boundary polygon. This information is used for defining
-# the Dirichlet boundary conditions. If a domain is completely internal, the
-# dictionary entry should be 0: None
-subdomain1_outer_boundary_verts = {
- 0: [interface12_vertices[1], #
- sub_domain0_vertices[2],
- sub_domain0_vertices[3], #
- interface12_vertices[0]]
-}
-# subdomain2
-sub_domain2_vertices = [sub_domain0_vertices[0],
- sub_domain0_vertices[1],
- interface12_vertices[1],
- interface12_vertices[0] ]
-
-subdomain2_outer_boundary_verts = {
- 0: [interface12_vertices[0], #
- sub_domain0_vertices[0],
- sub_domain0_vertices[1],
- interface12_vertices[1]]
-}
-
-# list of subdomains given by the boundary polygon vertices.
-# Subdomains are given as a list of dolfin points forming
-# a closed polygon, such that mshr.Polygon(subdomain_def_points[i]) can be used
-# to create the subdomain. subdomain_def_points[0] contains the
-# vertices of the global simulation domain and subdomain_def_points[i] contains the
-# vertices of the subdomain i.
-subdomain_def_points = [sub_domain0_vertices,#
- sub_domain1_vertices,#
- sub_domain2_vertices]
-# in the below list, index 0 corresponds to the 12 interface which has index 1
-interface_def_points = [interface12_vertices]
-
-# if a subdomain has no outer boundary write None instead, i.e.
-# i: None
-# if i is the index of the inner subdomain.
-outer_boundary_def_points = {
- # subdomain number
- 1 : subdomain1_outer_boundary_verts,
- 2 : subdomain2_outer_boundary_verts
-}
-
-# adjacent_subdomains[i] contains the indices of the subdomains sharing the
-# interface i (i.e. given by interface_def_points[i]).
-adjacent_subdomains = [[1,2]]
-
+substructuring = dss.twoSoilLayers()
+interface_def_points = substructuring.interface_def_points
+adjacent_subdomains = substructuring.adjacent_subdomains
+subdomain_def_points = substructuring.subdomain_def_points
+outer_boundary_def_points = substructuring.outer_boundary_def_points
# MODEL CONFIGURATION #########################################################
isRichards = {
@@ -240,178 +181,28 @@ intrinsic_permeability = {
2: 0.01,
}
-
-## relative permeabilty functions on subdomain 1
-def rel_perm1w(s):
- # relative permeabilty wetting on subdomain1
- return intrinsic_permeability[1]*s**2
-
-def rel_perm1nw(s):
- # relative permeabilty nonwetting on subdomain1
- return intrinsic_permeability[1]*(1-s)**2
-
-_rel_perm1w = ft.partial(rel_perm1w)
-_rel_perm1nw = ft.partial(rel_perm1nw)
-
-subdomain1_rel_perm = {
- 'wetting': _rel_perm1w,#
- 'nonwetting': _rel_perm1nw
-}
-## relative permeabilty functions on subdomain 2
-def rel_perm2w(s):
- # relative permeabilty wetting on subdomain2
- return intrinsic_permeability[2]*s**3
-def rel_perm2nw(s):
- # relative permeabilty nonwetting on subdomain2
- return intrinsic_permeability[2]*(1-s)**3
-
-_rel_perm2w = ft.partial(rel_perm2w)
-_rel_perm2nw = ft.partial(rel_perm2nw)
-
-subdomain2_rel_perm = {
- 'wetting': _rel_perm2w,#
- 'nonwetting': _rel_perm2nw
-}
-
-## dictionary of relative permeabilties on all domains.
-relative_permeability = {#
- 1: subdomain1_rel_perm,
- 2: subdomain2_rel_perm
-}
-
-
-# definition of the derivatives of the relative permeabilities
-# relative permeabilty functions on subdomain 1
-def rel_perm1w_prime(s):
- # relative permeabilty on subdomain1
- return intrinsic_permeability[1]*2*s
-
-def rel_perm1nw_prime(s):
- # relative permeabilty on subdomain1
- return -1*intrinsic_permeability[1]*2*(1-s)
-
-# definition of the derivatives of the relative permeabilities
-# relative permeabilty functions on subdomain 1
-def rel_perm2w_prime(s):
- # relative permeabilty on subdomain2
- return intrinsic_permeability[2]*3*s**2
-
-def rel_perm2nw_prime(s):
- # relative permeabilty on subdomain2
- return -3*intrinsic_permeability[2]*(1-s)**2
-
-_rel_perm1w_prime = ft.partial(rel_perm1w_prime)
-_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime)
-_rel_perm2w_prime = ft.partial(rel_perm2w_prime)
-_rel_perm2nw_prime = ft.partial(rel_perm2nw_prime)
-
-subdomain1_rel_perm_prime = {
- 'wetting': _rel_perm1w_prime,
- 'nonwetting': _rel_perm1nw_prime
-}
-
-
-subdomain2_rel_perm_prime = {
- 'wetting': _rel_perm2w_prime,
- 'nonwetting': _rel_perm2nw_prime
+# RELATIVE PEMRMEABILITIES
+rel_perm_definition = {
+ 1: {"wetting": "Spow2",
+ "nonwetting": "oneMinusSpow2"},
+ 2: {"wetting": "Spow3",
+ "nonwetting": "oneMinusSpow3"},
}
-# dictionary of relative permeabilties on all domains.
-ka_prime = {
- 1: subdomain1_rel_perm_prime,
- 2: subdomain2_rel_perm_prime,
-}
-
-
-# def saturation1(pc, subdomain_index):
-# # inverse capillary pressure-saturation-relationship
-# return df.conditional(pc > 0, 1/((1 + pc)**(1/(subdomain_index + 1))), 1)
-#
-# def saturation2(pc, n_index, alpha):
-# # inverse capillary pressure-saturation-relationship
-# return df.conditional(pc > 0, 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)), 1)
-#
-# # S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where
-# # we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw
-# def saturation1_sym(pc, subdomain_index):
-# # inverse capillary pressure-saturation-relationship
-# return 1/((1 + pc)**(1/(subdomain_index + 1)))
-#
-#
-# def saturation2_sym(pc, n_index, alpha):
-# # inverse capillary pressure-saturation-relationship
-# #df.conditional(pc > 0,
-# return 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index))
-#
-#
-# # derivative of S-pc relationship with respect to pc. This is needed for the
-# # construction of a analytic solution.
-# def saturation1_sym_prime(pc, subdomain_index):
-# # inverse capillary pressure-saturation-relationship
-# return -(1/(subdomain_index + 1))*(1 + pc)**((-subdomain_index - 2)/(subdomain_index + 1))
-#
-#
-# def saturation2_sym_prime(pc, n_index, alpha):
-# # inverse capillary pressure-saturation-relationship
-# return -(alpha*(n_index - 1)*(alpha*pc)**(n_index - 1)) / ( (1 + (alpha*pc)**n_index)**((2*n_index - 1)/n_index) )
-#
-# # note that the conditional definition of S-pc in the nonsymbolic part will be
-# # incorporated in the construction of the exact solution below.
-# S_pc_sym = {
-# 1: ft.partial(saturation1_sym, subdomain_index = 1),
-# 2: ft.partial(saturation2_sym, n_index=3, alpha=0.001),
-# }
-#
-# S_pc_sym_prime = {
-# 1: ft.partial(saturation1_sym_prime, subdomain_index = 1),
-# 2: ft.partial(saturation2_sym_prime, n_index=3, alpha=0.001),
-# }
-#
-# sat_pressure_relationship = {
-# 1: ft.partial(saturation1, subdomain_index = 1),#,
-# 2: ft.partial(saturation2, n_index=3, alpha=0.001),
-# }
-
-def saturation(pc, index):
- # inverse capillary pressure-saturation-relationship
- return df.conditional(pc > 0, 1/((1 + pc)**(1/(index + 1))), 1)
-
-
-def saturation_sym(pc, index):
- # inverse capillary pressure-saturation-relationship
- return 1/((1 + pc)**(1/(index + 1)))
-
-
-# derivative of S-pc relationship with respect to pc. This is needed for the
-# construction of a analytic solution.
-def saturation_sym_prime(pc, index):
- # inverse capillary pressure-saturation-relationship
- return -1/((index+1)*(1 + pc)**((index+2)/(index+1)))
-
-
-# note that the conditional definition of S-pc in the nonsymbolic part will be
-# incorporated in the construction of the exact solution below.
-S_pc_sym = {
- 1: ft.partial(saturation_sym, index=1),
- 2: ft.partial(saturation_sym, index=2),
- # 3: ft.partial(saturation_sym, index=2),
- # 4: ft.partial(saturation_sym, index=1)
-}
-
-S_pc_sym_prime = {
- 1: ft.partial(saturation_sym_prime, index=1),
- 2: ft.partial(saturation_sym_prime, index=2),
- # 3: ft.partial(saturation_sym_prime, index=2),
- # 4: ft.partial(saturation_sym_prime, index=1)
-}
+rel_perm_dict = fts.generate_relative_permeability_dicts(rel_perm_definition)
+relative_permeability = rel_perm_dict["ka"]
+ka_prime = rel_perm_dict["ka_prime"]
-sat_pressure_relationship = {
- 1: ft.partial(saturation, index=1),
- 2: ft.partial(saturation, index=2),
- # 3: ft.partial(saturation, index=2),
- # 4: ft.partial(saturation, index=1)
+# S-pc relation
+Spc_on_subdomains = {
+ 1: {"testSpc": {"index": 1}},
+ 2: {"testSpc": {"index": 2}},
}
+Spc = fts.generate_Spc_dicts(Spc_on_subdomains)
+S_pc_sym = Spc["symbolic"]
+S_pc_sym_prime = Spc["prime_symbolic"]
+sat_pressure_relationship = Spc["dolfin"]
###############################################################################
# Manufacture source expressions with sympy #
@@ -432,15 +223,10 @@ p_e_sym = {
'nonwetting': (-1 -t*(1.1 + y*y) - sym.sin((x*y-0.5*t)*y**2)**2)}, #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2},
}
-
-pc_e_sym = dict()
-for subdomain, isR in isRichards.items():
- if isR:
- pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting'].copy()})
- else:
- pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'].copy()
- - p_e_sym[subdomain]['wetting'].copy()})
-
+pc_e_sym = hlp.generate_exact_symbolic_pc(
+ isRichards=isRichards,
+ symbolic_pressure=p_e_sym
+ )
symbols = {"x": x,
"y": y,
@@ -456,6 +242,7 @@ exact_solution_example = hlp.generate_exact_solution_expressions(
saturation_pressure_relationship_prime=S_pc_sym_prime,
viscosity=viscosity,
porosity=porosity,
+ intrinsic_permeability=intrinsic_permeability,
relative_permeability=relative_permeability,
relative_permeability_prime=ka_prime,
densities=densities,
@@ -467,34 +254,17 @@ exact_solution = exact_solution_example['exact_solution']
initial_condition = exact_solution_example['initial_condition']
# BOUNDARY CONDITIONS #########################################################
-# Dictionary of dirichlet boundary conditions.
-dirichletBC = dict()
-# similarly to the outer boundary dictionary, if a patch has no outer boundary
-# None should be written instead of an expression.
-# This is a bit of a brainfuck:
-# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind.
-# Since a domain patch can have several disjoint outer boundary parts, the
-# expressions need to get an enumaration index which starts at 0.
-# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of
-# subdomain ind and boundary part j.
-# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting']
-# return the actual expression needed for the dirichlet condition for both
-# phases if present.
-
-# subdomain index: {outer boudary part index: {phase: expression}}
-for subdomain in isRichards.keys():
- # subdomain can have no outer boundary
- if outer_boundary_def_points[subdomain] is None:
- dirichletBC.update({subdomain: None})
- else:
- dirichletBC.update({subdomain: dict()})
- # set the dirichlet conditions to be the same code as exact solution on
- # the subdomain.
- for outer_boundary_ind in outer_boundary_def_points[subdomain].keys():
- dirichletBC[subdomain].update(
- {outer_boundary_ind: exact_solution[subdomain]}
- )
-
+# Dictionary of dirichlet boundary conditions. If an exact solution case is
+# used, use the hlp.generate_exact_DirichletBC() method to generate the
+# Dirichlet Boundary conditions from the exact solution.
+dirichletBC = hlp.generate_exact_DirichletBC(
+ isRichards=isRichards,
+ outer_boundary_def_points=outer_boundary_def_points,
+ exact_solution=exact_solution
+ )
+# If no exact solution is provided you need to provide a dictionary of boundary
+# conditions. See the definiton of hlp.generate_exact_DirichletBC() to see
+# the structure.
# LOG FILE OUTPUT #############################################################
# read this file and print it to std out. This way the simulation can produce a
@@ -504,88 +274,64 @@ print(f.read())
f.close()
-# RUN #########################################################################
-for starttime in starttimes:
- for mesh_resolution, solver_tol in resolutions.items():
- # initialise LDD simulation class
- simulation = ldd.LDDsimulation(
- tol=1E-14,
- LDDsolver_tol=solver_tol,
- debug=debugflag,
- max_iter_num=max_iter_num,
- FEM_Lagrange_degree=FEM_Lagrange_degree,
- mesh_study=mesh_study
- )
-
- simulation.set_parameters(
- use_case=use_case,
- output_dir=output_string,
- subdomain_def_points=subdomain_def_points,
- isRichards=isRichards,
- interface_def_points=interface_def_points,
- outer_boundary_def_points=outer_boundary_def_points,
- adjacent_subdomains=adjacent_subdomains,
- mesh_resolution=mesh_resolution,
- viscosity=viscosity,
- porosity=porosity,
- L=L,
- lambda_param=lambda_param,
- relative_permeability=relative_permeability,
- saturation=sat_pressure_relationship,
- starttime=starttime,
- number_of_timesteps=number_of_timesteps,
- number_of_timesteps_to_analyse=number_of_timesteps_to_analyse,
- plot_timestep_every=plot_timestep_every,
- timestep_size=timestep_size,
- sources=source_expression,
- initial_conditions=initial_condition,
- dirichletBC_expression_strings=dirichletBC,
- exact_solution=exact_solution,
- densities=densities,
- include_gravity=include_gravity,
- gravity_acceleration=gravity_acceleration,
- write2file=write_to_file,
- )
-
- simulation.initialise()
- output_dir = simulation.output_dir
- # simulation.write_exact_solution_to_xdmf()
- output = simulation.run(analyse_condition=analyse_condition)
- for subdomain_index, subdomain_output in output.items():
- mesh_h = subdomain_output['mesh_size']
- for phase, error_dict in subdomain_output['errornorm'].items():
- filename = output_dir \
- + "subdomain{}".format(subdomain_index)\
- + "-space-time-errornorm-{}-phase.csv".format(phase)
- # for errortype, errornorm in error_dict.items():
-
- # eocfile = open("eoc_filename", "a")
- # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" )
- # eocfile.close()
- # if subdomain.isRichards:mesh_h
- data_dict = {
- 'mesh_parameter': mesh_resolution,
- 'mesh_h': mesh_h,
- }
- for norm_type, errornorm in error_dict.items():
- data_dict.update(
- {norm_type: errornorm}
- )
- errors = pd.DataFrame(data_dict, index=[mesh_resolution])
- # check if file exists
- if os.path.isfile(filename) is True:
- with open(filename, 'a') as f:
- errors.to_csv(
- f,
- header=False,
- sep='\t',
- encoding='utf-8',
- index=False
+# MAIN ########################################################################
+if __name__ == '__main__':
+ # dictionary of simualation parameters to pass to the run function.
+ # mesh_resolution and starttime are excluded, as they get passed explicitly
+ # to achieve parallelisation in these parameters in these parameters for
+ # mesh studies etc.
+ simulation_parameter = {
+ "tol": 1E-14,
+ "debugflag": debugflag,
+ "max_iter_num": max_iter_num,
+ "FEM_Lagrange_degree": FEM_Lagrange_degree,
+ "mesh_study": mesh_study,
+ "use_case": use_case,
+ "output_string": output_string,
+ "subdomain_def_points": subdomain_def_points,
+ "isRichards": isRichards,
+ "interface_def_points": interface_def_points,
+ "outer_boundary_def_points": outer_boundary_def_points,
+ "adjacent_subdomains": adjacent_subdomains,
+ # "mesh_resolution": mesh_resolution,
+ "viscosity": viscosity,
+ "porosity": porosity,
+ "L": L,
+ "lambda_param": lambda_param,
+ "relative_permeability": relative_permeability,
+ "intrinsic_permeability": intrinsic_permeability,
+ "sat_pressure_relationship": sat_pressure_relationship,
+ # "starttime": starttime,
+ "number_of_timesteps": number_of_timesteps,
+ "number_of_timesteps_to_analyse": number_of_timesteps_to_analyse,
+ "plot_timestep_every": plot_timestep_every,
+ "timestep_size": timestep_size,
+ "source_expression": source_expression,
+ "initial_condition": initial_condition,
+ "dirichletBC": dirichletBC,
+ "exact_solution": exact_solution,
+ "densities": densities,
+ "include_gravity": include_gravity,
+ "gravity_acceleration": gravity_acceleration,
+ "write_to_file": write_to_file,
+ "analyse_condition": analyse_condition
+ }
+ for starttime in starttimes:
+ for mesh_resolution, solver_tol in resolutions.items():
+ simulation_parameter.update({"solver_tol": solver_tol})
+ hlp.info(simulation_parameter["use_case"])
+ LDDsim = mp.Process(
+ target=hlp.run_simulation,
+ args=(
+ simulation_parameter,
+ starttime,
+ mesh_resolution
)
- else:
- errors.to_csv(
- filename,
- sep='\t',
- encoding='utf-8',
- index=False
)
+ LDDsim.start()
+ LDDsim.join()
+ # hlp.run_simulation(
+ # mesh_resolution=mesh_resolution,
+ # starttime=starttime,
+ # parameter=simulation_parameter
+ # )
diff --git a/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/TP-TP-2-patch-test.py b/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/TP-TP-2-patch-test.py
index c084d57..8028615 100755
--- a/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/TP-TP-2-patch-test.py
+++ b/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/TP-TP-2-patch-test.py
@@ -3,16 +3,15 @@
This program sets up an LDD simulation
"""
-
import dolfin as df
import sympy as sym
-import functools as ft
+import functions as fts
import LDDsimulation as ldd
import helpers as hlp
import datetime
import os
-import pandas as pd
-
+import multiprocessing as mp
+import domainSubstructuring as dss
# init sympy session
sym.init_printing()
@@ -120,81 +119,16 @@ else:
}
# OUTPUT FILE STRING #########################################################
-if mesh_study:
- output_string = "./output/{}-{}_timesteps{}_P{}".format(
- datestr, use_case, number_of_timesteps, FEM_Lagrange_degree
- )
-else:
- for tol in resolutions.values():
- solver_tol = tol
- output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}".format(
- datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol
- )
-
+output_string = "./output/{}-{}_timesteps{}_P{}".format(
+ datestr, use_case, number_of_timesteps, FEM_Lagrange_degree
+ )
# DOMAIN AND INTERFACE #######################################################
-# global simulation domain domain
-sub_domain0_vertices = [df.Point(-1.0, -1.0),
- df.Point(1.0, -1.0),
- df.Point(1.0, 1.0),
- df.Point(-1.0, 1.0)]
-# interface between subdomain1 and subdomain2
-interface12_vertices = [df.Point(-1.0, 0.0),
- df.Point(1.0, 0.0) ]
-# subdomain1.
-sub_domain1_vertices = [interface12_vertices[0],
- interface12_vertices[1],
- sub_domain0_vertices[2],
- sub_domain0_vertices[3]]
-
-# vertex coordinates of the outer boundaries. If it can not be specified as a
-# polygon, use an entry per boundary polygon. This information is used for defining
-# the Dirichlet boundary conditions. If a domain is completely internal, the
-# dictionary entry should be 0: None
-subdomain1_outer_boundary_verts = {
- 0: [interface12_vertices[1], #
- sub_domain0_vertices[2],
- sub_domain0_vertices[3], #
- interface12_vertices[0]]
-}
-# subdomain2
-sub_domain2_vertices = [sub_domain0_vertices[0],
- sub_domain0_vertices[1],
- interface12_vertices[1],
- interface12_vertices[0] ]
-
-subdomain2_outer_boundary_verts = {
- 0: [interface12_vertices[0], #
- sub_domain0_vertices[0],
- sub_domain0_vertices[1],
- interface12_vertices[1]]
-}
-
-# list of subdomains given by the boundary polygon vertices.
-# Subdomains are given as a list of dolfin points forming
-# a closed polygon, such that mshr.Polygon(subdomain_def_points[i]) can be used
-# to create the subdomain. subdomain_def_points[0] contains the
-# vertices of the global simulation domain and subdomain_def_points[i] contains the
-# vertices of the subdomain i.
-subdomain_def_points = [sub_domain0_vertices,#
- sub_domain1_vertices,#
- sub_domain2_vertices]
-# in the below list, index 0 corresponds to the 12 interface which has index 1
-interface_def_points = [interface12_vertices]
-
-# if a subdomain has no outer boundary write None instead, i.e.
-# i: None
-# if i is the index of the inner subdomain.
-outer_boundary_def_points = {
- # subdomain number
- 1 : subdomain1_outer_boundary_verts,
- 2 : subdomain2_outer_boundary_verts
-}
-
-# adjacent_subdomains[i] contains the indices of the subdomains sharing the
-# interface i (i.e. given by interface_def_points[i]).
-adjacent_subdomains = [[1,2]]
-
+substructuring = dss.twoSoilLayers()
+interface_def_points = substructuring.interface_def_points
+adjacent_subdomains = substructuring.adjacent_subdomains
+subdomain_def_points = substructuring.subdomain_def_points
+outer_boundary_def_points = substructuring.outer_boundary_def_points
# MODEL CONFIGURATION #########################################################
isRichards = {
@@ -247,178 +181,28 @@ intrinsic_permeability = {
2: 0.1,
}
-
-## relative permeabilty functions on subdomain 1
-def rel_perm1w(s):
- # relative permeabilty wetting on subdomain1
- return intrinsic_permeability[1]*s**2
-
-def rel_perm1nw(s):
- # relative permeabilty nonwetting on subdomain1
- return intrinsic_permeability[1]*(1-s)**2
-
-_rel_perm1w = ft.partial(rel_perm1w)
-_rel_perm1nw = ft.partial(rel_perm1nw)
-
-subdomain1_rel_perm = {
- 'wetting': _rel_perm1w,#
- 'nonwetting': _rel_perm1nw
-}
-## relative permeabilty functions on subdomain 2
-def rel_perm2w(s):
- # relative permeabilty wetting on subdomain2
- return intrinsic_permeability[2]*s**3
-def rel_perm2nw(s):
- # relative permeabilty nonwetting on subdomain2
- return intrinsic_permeability[2]*(1-s)**3
-
-_rel_perm2w = ft.partial(rel_perm2w)
-_rel_perm2nw = ft.partial(rel_perm2nw)
-
-subdomain2_rel_perm = {
- 'wetting': _rel_perm2w,#
- 'nonwetting': _rel_perm2nw
-}
-
-## dictionary of relative permeabilties on all domains.
-relative_permeability = {#
- 1: subdomain1_rel_perm,
- 2: subdomain2_rel_perm
+# RELATIVE PEMRMEABILITIES
+rel_perm_definition = {
+ 1: {"wetting": "Spow2",
+ "nonwetting": "oneMinusSpow2"},
+ 2: {"wetting": "Spow3",
+ "nonwetting": "oneMinusSpow3"},
}
+rel_perm_dict = fts.generate_relative_permeability_dicts(rel_perm_definition)
+relative_permeability = rel_perm_dict["ka"]
+ka_prime = rel_perm_dict["ka_prime"]
-# definition of the derivatives of the relative permeabilities
-# relative permeabilty functions on subdomain 1
-def rel_perm1w_prime(s):
- # relative permeabilty on subdomain1
- return intrinsic_permeability[1]*2*s
-
-def rel_perm1nw_prime(s):
- # relative permeabilty on subdomain1
- return -1*intrinsic_permeability[1]*2*(1-s)
-
-# definition of the derivatives of the relative permeabilities
-# relative permeabilty functions on subdomain 1
-def rel_perm2w_prime(s):
- # relative permeabilty on subdomain2
- return intrinsic_permeability[2]*3*s**2
-
-def rel_perm2nw_prime(s):
- # relative permeabilty on subdomain2
- return -3*intrinsic_permeability[2]*(1-s)**2
-
-_rel_perm1w_prime = ft.partial(rel_perm1w_prime)
-_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime)
-_rel_perm2w_prime = ft.partial(rel_perm2w_prime)
-_rel_perm2nw_prime = ft.partial(rel_perm2nw_prime)
-
-subdomain1_rel_perm_prime = {
- 'wetting': _rel_perm1w_prime,
- 'nonwetting': _rel_perm1nw_prime
-}
-
-
-subdomain2_rel_perm_prime = {
- 'wetting': _rel_perm2w_prime,
- 'nonwetting': _rel_perm2nw_prime
-}
-
-# dictionary of relative permeabilties on all domains.
-ka_prime = {
- 1: subdomain1_rel_perm_prime,
- 2: subdomain2_rel_perm_prime,
-}
-
-
-# def saturation1(pc, subdomain_index):
-# # inverse capillary pressure-saturation-relationship
-# return df.conditional(pc > 0, 1/((1 + pc)**(1/(subdomain_index + 1))), 1)
-#
-# def saturation2(pc, n_index, alpha):
-# # inverse capillary pressure-saturation-relationship
-# return df.conditional(pc > 0, 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)), 1)
-#
-# # S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where
-# # we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw
-# def saturation1_sym(pc, subdomain_index):
-# # inverse capillary pressure-saturation-relationship
-# return 1/((1 + pc)**(1/(subdomain_index + 1)))
-#
-#
-# def saturation2_sym(pc, n_index, alpha):
-# # inverse capillary pressure-saturation-relationship
-# #df.conditional(pc > 0,
-# return 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index))
-#
-#
-# # derivative of S-pc relationship with respect to pc. This is needed for the
-# # construction of a analytic solution.
-# def saturation1_sym_prime(pc, subdomain_index):
-# # inverse capillary pressure-saturation-relationship
-# return -(1/(subdomain_index + 1))*(1 + pc)**((-subdomain_index - 2)/(subdomain_index + 1))
-#
-#
-# def saturation2_sym_prime(pc, n_index, alpha):
-# # inverse capillary pressure-saturation-relationship
-# return -(alpha*(n_index - 1)*(alpha*pc)**(n_index - 1)) / ( (1 + (alpha*pc)**n_index)**((2*n_index - 1)/n_index) )
-#
-# # note that the conditional definition of S-pc in the nonsymbolic part will be
-# # incorporated in the construction of the exact solution below.
-# S_pc_sym = {
-# 1: ft.partial(saturation1_sym, subdomain_index = 1),
-# 2: ft.partial(saturation2_sym, n_index=3, alpha=0.001),
-# }
-#
-# S_pc_sym_prime = {
-# 1: ft.partial(saturation1_sym_prime, subdomain_index = 1),
-# 2: ft.partial(saturation2_sym_prime, n_index=3, alpha=0.001),
-# }
-#
-# sat_pressure_relationship = {
-# 1: ft.partial(saturation1, subdomain_index = 1),#,
-# 2: ft.partial(saturation2, n_index=3, alpha=0.001),
-# }
-
-def saturation(pc, index):
- # inverse capillary pressure-saturation-relationship
- return df.conditional(pc > 0, 1/((1 + pc)**(1/(index + 1))), 1)
-
-
-def saturation_sym(pc, index):
- # inverse capillary pressure-saturation-relationship
- return 1/((1 + pc)**(1/(index + 1)))
-
-
-# derivative of S-pc relationship with respect to pc. This is needed for the
-# construction of a analytic solution.
-def saturation_sym_prime(pc, index):
- # inverse capillary pressure-saturation-relationship
- return -1/((index+1)*(1 + pc)**((index+2)/(index+1)))
-
-
-# note that the conditional definition of S-pc in the nonsymbolic part will be
-# incorporated in the construction of the exact solution below.
-S_pc_sym = {
- 1: ft.partial(saturation_sym, index=1),
- 2: ft.partial(saturation_sym, index=2),
- # 3: ft.partial(saturation_sym, index=2),
- # 4: ft.partial(saturation_sym, index=1)
-}
-
-S_pc_sym_prime = {
- 1: ft.partial(saturation_sym_prime, index=1),
- 2: ft.partial(saturation_sym_prime, index=2),
- # 3: ft.partial(saturation_sym_prime, index=2),
- # 4: ft.partial(saturation_sym_prime, index=1)
-}
-
-sat_pressure_relationship = {
- 1: ft.partial(saturation, index=1),
- 2: ft.partial(saturation, index=2),
- # 3: ft.partial(saturation, index=2),
- # 4: ft.partial(saturation, index=1)
+# S-pc relation
+Spc_on_subdomains = {
+ 1: {"testSpc": {"index": 1}},
+ 2: {"testSpc": {"index": 2}},
}
+Spc = fts.generate_Spc_dicts(Spc_on_subdomains)
+S_pc_sym = Spc["symbolic"]
+S_pc_sym_prime = Spc["prime_symbolic"]
+sat_pressure_relationship = Spc["dolfin"]
###############################################################################
# Manufacture source expressions with sympy #
@@ -439,15 +223,10 @@ p_e_sym = {
'nonwetting': (-1 -t*(1.1 + y*y) - sym.sin((x*y-0.5*t)*y**2)**2)}, #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2},
}
-
-pc_e_sym = dict()
-for subdomain, isR in isRichards.items():
- if isR:
- pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting'].copy()})
- else:
- pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'].copy()
- - p_e_sym[subdomain]['wetting'].copy()})
-
+pc_e_sym = hlp.generate_exact_symbolic_pc(
+ isRichards=isRichards,
+ symbolic_pressure=p_e_sym
+ )
symbols = {"x": x,
"y": y,
@@ -463,6 +242,7 @@ exact_solution_example = hlp.generate_exact_solution_expressions(
saturation_pressure_relationship_prime=S_pc_sym_prime,
viscosity=viscosity,
porosity=porosity,
+ intrinsic_permeability=intrinsic_permeability,
relative_permeability=relative_permeability,
relative_permeability_prime=ka_prime,
densities=densities,
@@ -474,34 +254,17 @@ exact_solution = exact_solution_example['exact_solution']
initial_condition = exact_solution_example['initial_condition']
# BOUNDARY CONDITIONS #########################################################
-# Dictionary of dirichlet boundary conditions.
-dirichletBC = dict()
-# similarly to the outer boundary dictionary, if a patch has no outer boundary
-# None should be written instead of an expression.
-# This is a bit of a brainfuck:
-# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind.
-# Since a domain patch can have several disjoint outer boundary parts, the
-# expressions need to get an enumaration index which starts at 0.
-# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of
-# subdomain ind and boundary part j.
-# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting']
-# return the actual expression needed for the dirichlet condition for both
-# phases if present.
-
-# subdomain index: {outer boudary part index: {phase: expression}}
-for subdomain in isRichards.keys():
- # subdomain can have no outer boundary
- if outer_boundary_def_points[subdomain] is None:
- dirichletBC.update({subdomain: None})
- else:
- dirichletBC.update({subdomain: dict()})
- # set the dirichlet conditions to be the same code as exact solution on
- # the subdomain.
- for outer_boundary_ind in outer_boundary_def_points[subdomain].keys():
- dirichletBC[subdomain].update(
- {outer_boundary_ind: exact_solution[subdomain]}
- )
-
+# Dictionary of dirichlet boundary conditions. If an exact solution case is
+# used, use the hlp.generate_exact_DirichletBC() method to generate the
+# Dirichlet Boundary conditions from the exact solution.
+dirichletBC = hlp.generate_exact_DirichletBC(
+ isRichards=isRichards,
+ outer_boundary_def_points=outer_boundary_def_points,
+ exact_solution=exact_solution
+ )
+# If no exact solution is provided you need to provide a dictionary of boundary
+# conditions. See the definiton of hlp.generate_exact_DirichletBC() to see
+# the structure.
# LOG FILE OUTPUT #############################################################
# read this file and print it to std out. This way the simulation can produce a
@@ -511,88 +274,64 @@ print(f.read())
f.close()
-# RUN #########################################################################
-for starttime in starttimes:
- for mesh_resolution, solver_tol in resolutions.items():
- # initialise LDD simulation class
- simulation = ldd.LDDsimulation(
- tol=1E-14,
- LDDsolver_tol=solver_tol,
- debug=debugflag,
- max_iter_num=max_iter_num,
- FEM_Lagrange_degree=FEM_Lagrange_degree,
- mesh_study=mesh_study
- )
-
- simulation.set_parameters(
- use_case=use_case,
- output_dir=output_string,
- subdomain_def_points=subdomain_def_points,
- isRichards=isRichards,
- interface_def_points=interface_def_points,
- outer_boundary_def_points=outer_boundary_def_points,
- adjacent_subdomains=adjacent_subdomains,
- mesh_resolution=mesh_resolution,
- viscosity=viscosity,
- porosity=porosity,
- L=L,
- lambda_param=lambda_param,
- relative_permeability=relative_permeability,
- saturation=sat_pressure_relationship,
- starttime=starttime,
- number_of_timesteps=number_of_timesteps,
- number_of_timesteps_to_analyse=number_of_timesteps_to_analyse,
- plot_timestep_every=plot_timestep_every,
- timestep_size=timestep_size,
- sources=source_expression,
- initial_conditions=initial_condition,
- dirichletBC_expression_strings=dirichletBC,
- exact_solution=exact_solution,
- densities=densities,
- include_gravity=include_gravity,
- gravity_acceleration=gravity_acceleration,
- write2file=write_to_file,
- )
-
- simulation.initialise()
- output_dir = simulation.output_dir
- # simulation.write_exact_solution_to_xdmf()
- output = simulation.run(analyse_condition=analyse_condition)
- for subdomain_index, subdomain_output in output.items():
- mesh_h = subdomain_output['mesh_size']
- for phase, error_dict in subdomain_output['errornorm'].items():
- filename = output_dir \
- + "subdomain{}".format(subdomain_index)\
- + "-space-time-errornorm-{}-phase.csv".format(phase)
- # for errortype, errornorm in error_dict.items():
-
- # eocfile = open("eoc_filename", "a")
- # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" )
- # eocfile.close()
- # if subdomain.isRichards:mesh_h
- data_dict = {
- 'mesh_parameter': mesh_resolution,
- 'mesh_h': mesh_h,
- }
- for norm_type, errornorm in error_dict.items():
- data_dict.update(
- {norm_type: errornorm}
- )
- errors = pd.DataFrame(data_dict, index=[mesh_resolution])
- # check if file exists
- if os.path.isfile(filename) is True:
- with open(filename, 'a') as f:
- errors.to_csv(
- f,
- header=False,
- sep='\t',
- encoding='utf-8',
- index=False
+# MAIN ########################################################################
+if __name__ == '__main__':
+ # dictionary of simualation parameters to pass to the run function.
+ # mesh_resolution and starttime are excluded, as they get passed explicitly
+ # to achieve parallelisation in these parameters in these parameters for
+ # mesh studies etc.
+ simulation_parameter = {
+ "tol": 1E-14,
+ "debugflag": debugflag,
+ "max_iter_num": max_iter_num,
+ "FEM_Lagrange_degree": FEM_Lagrange_degree,
+ "mesh_study": mesh_study,
+ "use_case": use_case,
+ "output_string": output_string,
+ "subdomain_def_points": subdomain_def_points,
+ "isRichards": isRichards,
+ "interface_def_points": interface_def_points,
+ "outer_boundary_def_points": outer_boundary_def_points,
+ "adjacent_subdomains": adjacent_subdomains,
+ # "mesh_resolution": mesh_resolution,
+ "viscosity": viscosity,
+ "porosity": porosity,
+ "L": L,
+ "lambda_param": lambda_param,
+ "relative_permeability": relative_permeability,
+ "intrinsic_permeability": intrinsic_permeability,
+ "sat_pressure_relationship": sat_pressure_relationship,
+ # "starttime": starttime,
+ "number_of_timesteps": number_of_timesteps,
+ "number_of_timesteps_to_analyse": number_of_timesteps_to_analyse,
+ "plot_timestep_every": plot_timestep_every,
+ "timestep_size": timestep_size,
+ "source_expression": source_expression,
+ "initial_condition": initial_condition,
+ "dirichletBC": dirichletBC,
+ "exact_solution": exact_solution,
+ "densities": densities,
+ "include_gravity": include_gravity,
+ "gravity_acceleration": gravity_acceleration,
+ "write_to_file": write_to_file,
+ "analyse_condition": analyse_condition
+ }
+ for starttime in starttimes:
+ for mesh_resolution, solver_tol in resolutions.items():
+ simulation_parameter.update({"solver_tol": solver_tol})
+ hlp.info(simulation_parameter["use_case"])
+ LDDsim = mp.Process(
+ target=hlp.run_simulation,
+ args=(
+ simulation_parameter,
+ starttime,
+ mesh_resolution
)
- else:
- errors.to_csv(
- filename,
- sep='\t',
- encoding='utf-8',
- index=False
)
+ LDDsim.start()
+ LDDsim.join()
+ # hlp.run_simulation(
+ # mesh_resolution=mesh_resolution,
+ # starttime=starttime,
+ # parameter=simulation_parameter
+ # )
--
GitLab