From 4c4cde3e9547d077c6c4db8a38a8e19c05a62b73 Mon Sep 17 00:00:00 2001 From: David Seus <david.seus@ians.uni-stuttgart.de> Date: Fri, 16 Aug 2019 15:23:35 +0200 Subject: [PATCH] fix weird git fuckug --- .../TP-TP-layered_soil_with_inner_patch.py | 453 +++++++++--------- 1 file changed, 232 insertions(+), 221 deletions(-) diff --git a/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch.py b/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch.py index 868fd4f..1e5e0a6 100755 --- a/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch.py +++ b/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch.py @@ -16,57 +16,60 @@ import typing as tp import functools as ft import domainPatch as dp import LDDsimulation as ldd +import helpers as hlp # init sympy session sym.init_printing() -# ----------------------------------------------------------------------------# -# ------------------- MESH ---------------------------------------------------# -# ----------------------------------------------------------------------------# +use_case = "TP-TP-layered-soil-with-inner-patch" +solver_tol = 1E-6 + +############ GRID #######################ΓΌ mesh_resolution = 50 -# ----------------------------------------:-----------------------------------# -# ------------------- TIME ---------------------------------------------------# -# ----------------------------------------------------------------------------# -timestep_size = 0.0001 -number_of_timesteps = 50 -# decide how many timesteps you want analysed. Analysed means, that we write -# out subsequent errors of the L-iteration within the timestep. -number_of_timesteps_to_analyse = 4 +timestep_size = 0.001 +number_of_timesteps = 1500 +# decide how many timesteps you want analysed. Analysed means, that we write out +# subsequent errors of the L-iteration within the timestep. +number_of_timesteps_to_analyse = 10 starttime = 0 -Lw = 10000 -Lnw = 10000 +Lw = 0.25 #/timestep_size +Lnw=Lw + +lambda_w = 41 +lambda_nw = 41 + +include_gravity = True +debugflag = False +analyse_condition = False + +output_string = "./output/nondirichlet_number_of_timesteps{}_".format(number_of_timesteps) -l_param_w = 30 -l_param_nw = 40 # global domain -subdomain0_vertices = [df.Point(0.0,0.0), # - df.Point(13.0,0.0),# - df.Point(13.0,8.0),# - df.Point(0.0,8.0)] +subdomain0_vertices = [df.Point(-1.0,-1.0), # + df.Point(1.0,-1.0),# + df.Point(1.0,1.0),# + df.Point(-1.0,1.0)] -interface12_vertices = [df.Point(0.0, 7.0), - df.Point(9.0, 7.0), - df.Point(10.5, 7.5), - df.Point(12.0, 7.0), - df.Point(13.0, 6.5)] +interface12_vertices = [df.Point(-1.0, 0.8), + df.Point(0.3, 0.8), + df.Point(0.5, 0.9), + df.Point(0.8, 0.7), + df.Point(1.0, 0.65)] -# interface23 -interface23_vertices = [df.Point(0.0, 5.0), - df.Point(3.0, 5.0), + # interface23 +interface23_vertices = [df.Point(-1.0, 0.0), + df.Point(-0.35, 0.0), # df.Point(6.5, 4.5), - df.Point(6.5, 5.0)] + df.Point(0.0, 0.0)] -interface24_vertices = [df.Point(6.5, 5.0), - df.Point(9.5, 5.0), - # df.Point(11.5, 3.5), - # df.Point(13.0, 3) - df.Point(11.5, 5.0) +interface24_vertices = [interface23_vertices[2], + df.Point(0.6, 0.0), ] -interface25_vertices = [df.Point(11.5, 5.0), - df.Point(13.0, 5.0) +interface25_vertices = [interface24_vertices[1], + df.Point(1.0, 0.0) ] @@ -74,26 +77,72 @@ interface32_vertices = [interface23_vertices[2], interface23_vertices[1], interface23_vertices[0]] -interface34_vertices = [df.Point(4.0, 2.0), - df.Point(4.7, 3.0), - interface23_vertices[2]] -# interface36 -interface36_vertices = [df.Point(0.0, 2.0), - df.Point(4.0, 2.0)] + +interface36_vertices = [df.Point(-1.0, -0.6), + df.Point(-0.6, -0.45)] -interface46_vertices = [df.Point(4.0, 2.0), - df.Point(9.0, 2.5)] +interface46_vertices = [interface36_vertices[1], + df.Point(0.3, -0.25)] + +interface56_vertices = [interface46_vertices[1], + df.Point(0.65, -0.6), + df.Point(1.0, -0.7)] + + + + +interface34_vertices = [interface36_vertices[1], + interface23_vertices[2]] +# interface36 -interface45_vertices = [df.Point(9.0, 2.5), - df.Point(10.0, 3.0), +interface45_vertices = [interface56_vertices[0], + df.Point(0.7, -0.2), interface25_vertices[0] ] -interface56_vertices = [df.Point(9.0, 2.5), - df.Point(10.5, 2.0), - df.Point(13.0, 1.5)] +# # subdomain1. +# subdomain1_vertices = [interface12_vertices[0], +# interface12_vertices[1], +# interface12_vertices[2], +# interface12_vertices[3], +# interface12_vertices[4], # southern boundary, 12 interface +# subdomain0_vertices[2], # eastern boundary, outer boundary +# subdomain0_vertices[3]] # northern boundary, outer on_boundary +# +# # vertex coordinates of the outer boundaries. If it can not be specified as a +# # polygon, use an entry per boundary polygon. This information is used for defining +# # the Dirichlet boundary conditions. If a domain is completely internal, the +# # dictionary entry should be 0: None +# subdomain1_outer_boundary_verts = { +# 0: [interface12_vertices[4], # +# subdomain0_vertices[2], # eastern boundary, outer boundary +# subdomain0_vertices[3], +# interface12_vertices[0]] +# } +# + +# #subdomain1 +# subdomain2_vertices = [interface23_vertices[0], +# interface23_vertices[1], +# interface23_vertices[2], +# interface23_vertices[3], +# interface23_vertices[4], +# interface23_vertices[5], # southern boundary, 23 interface +# subdomain1_vertices[4], # eastern boundary, outer boundary +# subdomain1_vertices[3], +# subdomain1_vertices[2], +# subdomain1_vertices[1], +# subdomain1_vertices[0] ] # northern boundary, 12 interface +# +# subdomain2_outer_boundary_verts = { +# 0: [interface23_vertices[5], +# subdomain1_vertices[4]], +# 1: [subdomain1_vertices[0], +# interface23_vertices[0]] +# } +# # interface_vertices introduces a global numbering of interfaces. interface_def_points = [interface12_vertices, @@ -131,10 +180,10 @@ subdomain1_vertices = [interface12_vertices[0], # the Dirichlet boundary conditions. If a domain is completely internal, the # dictionary entry should be 0: None subdomain1_outer_boundary_verts = { - 0: [interface12_vertices[4], # - subdomain0_vertices[2], # eastern boundary, outer boundary - subdomain0_vertices[3], - interface12_vertices[0]] + 0: [subdomain1_vertices[4], # + subdomain1_vertices[5], # eastern boundary, outer boundary + subdomain1_vertices[6], + subdomain1_vertices[0]] } #subdomain1 @@ -142,7 +191,6 @@ subdomain2_vertices = [interface23_vertices[0], interface23_vertices[1], interface23_vertices[2], interface24_vertices[1], - interface24_vertices[2], interface25_vertices[1], # southern boundary, 23 interface subdomain1_vertices[4], # eastern boundary, outer boundary subdomain1_vertices[3], @@ -151,10 +199,10 @@ subdomain2_vertices = [interface23_vertices[0], subdomain1_vertices[0] ] # northern boundary, 12 interface subdomain2_outer_boundary_verts = { - 0: [interface25_vertices[1], - subdomain1_vertices[4]], - 1: [subdomain1_vertices[0], - interface23_vertices[0]] + 0: [subdomain2_vertices[9], + subdomain2_vertices[0]], + 1: [subdomain2_vertices[4], + subdomain2_vertices[5]] } @@ -162,14 +210,13 @@ subdomain3_vertices = [interface36_vertices[0], interface36_vertices[1], # interface34_vertices[0], interface34_vertices[1], - interface34_vertices[2], # interface32_vertices[0], interface32_vertices[1], interface32_vertices[2] ] subdomain3_outer_boundary_verts = { - 0: [subdomain2_vertices[0], + 0: [subdomain3_vertices[4], subdomain3_vertices[0]] } @@ -177,8 +224,7 @@ subdomain3_outer_boundary_verts = { # subdomain3 subdomain4_vertices = [interface46_vertices[0], interface46_vertices[1], - df.Point(10.0, 3.0), - interface24_vertices[2], + interface45_vertices[1], interface24_vertices[1], interface24_vertices[0], interface34_vertices[1] @@ -212,10 +258,10 @@ subdomain6_vertices = [subdomain0_vertices[0], ] subdomain6_outer_boundary_verts = { - 0: [subdomain4_vertices[6], - subdomain4_vertices[0], - subdomain4_vertices[1], - subdomain4_vertices[2]] + 0: [subdomain6_vertices[6], + subdomain6_vertices[0], + subdomain6_vertices[1], + subdomain6_vertices[2]] } @@ -242,24 +288,25 @@ outer_boundary_def_points = { 6: subdomain6_outer_boundary_verts } -# isRichards = { -# 1: False, -# 2: False, -# 3: False, -# 4: False, -# 5: False, -# 6: False -# } isRichards = { - 1: True, - 2: True, - 3: True, - 4: True, - 5: True, - 6: True + 1: False, + 2: False, + 3: False, + 4: False, + 5: False, + 6: False } +# isRichards = { +# 1: True, +# 2: True, +# 3: True, +# 4: True, +# 5: True, +# 6: True +# } + # Dict of the form: { subdom_num : viscosity } viscosity = { 1: {'wetting' :1, @@ -323,18 +370,18 @@ L = { # subdom_num : lambda parameter for the L-scheme lambda_param = { - 1: {'wetting': l_param_w, - 'nonwetting': l_param_nw},# - 2: {'wetting': l_param_w, - 'nonwetting': l_param_nw},# - 3: {'wetting': l_param_w, - 'nonwetting': l_param_nw},# - 4: {'wetting': l_param_w, - 'nonwetting': l_param_nw},# - 5: {'wetting': l_param_w, - 'nonwetting': l_param_nw},# - 6: {'wetting': l_param_w, - 'nonwetting': l_param_nw},# + 1: {'wetting': lambda_w, + 'nonwetting': lambda_nw},# + 2: {'wetting': lambda_w, + 'nonwetting': lambda_nw},# + 3: {'wetting': lambda_w, + 'nonwetting': lambda_nw},# + 4: {'wetting': lambda_w, + 'nonwetting': lambda_nw},# + 5: {'wetting': lambda_w, + 'nonwetting': lambda_nw},# + 6: {'wetting': lambda_w, + 'nonwetting': lambda_nw},# } @@ -349,31 +396,31 @@ def rel_perm1nw(s): return (1-s)**2 -# ## relative permeabilty functions on subdomain 2 -# def rel_perm2w(s): -# # relative permeabilty wetting on subdomain2 -# return s**3 -# -# -# def rel_perm2nw(s): -# # relative permeabilty nonwetting on subdosym.cos(0.8*t - (0.8*x + 1/7*y))main2 -# return (1-s)**2 +## relative permeabilty functions on subdomain 2 +def rel_perm2w(s): + # relative permeabilty wetting on subdomain2 + return s**3 + + +def rel_perm2nw(s): + # relative permeabilty nonwetting on subdosym.cos(0.8*t - (0.8*x + 1/7*y))main2 + return (1-s)**3 _rel_perm1w = ft.partial(rel_perm1w) _rel_perm1nw = ft.partial(rel_perm1nw) -# _rel_perm2w = ft.partial(rel_perm2w) -# _rel_perm2nw = ft.partial(rel_perm2nw) +_rel_perm2w = ft.partial(rel_perm2w) +_rel_perm2nw = ft.partial(rel_perm2nw) subdomain1_rel_perm = { 'wetting': _rel_perm1w,# 'nonwetting': _rel_perm1nw } -# subdomain2_rel_perm = { -# 'wetting': _rel_perm2w,# -# 'nonwetting': _rel_perm2nw -# } +subdomain2_rel_perm = { + 'wetting': _rel_perm2w,# + 'nonwetting': _rel_perm2nw +} # _rel_perm3 = ft.partial(rel_perm2) # subdomain3_rel_perm = subdomain2_rel_perm.copy() @@ -385,10 +432,10 @@ subdomain1_rel_perm = { relative_permeability = { 1: subdomain1_rel_perm, 2: subdomain1_rel_perm, - 3: subdomain1_rel_perm, - 4: subdomain1_rel_perm, - 5: subdomain1_rel_perm, - 6: subdomain1_rel_perm, + 3: subdomain2_rel_perm, + 4: subdomain2_rel_perm, + 5: subdomain2_rel_perm, + 6: subdomain2_rel_perm, } # definition of the derivatives of the relative permeabilities @@ -399,22 +446,22 @@ def rel_perm1w_prime(s): def rel_perm1nw_prime(s): # relative permeabilty on subdomain1 - return 2*(1-s) + return -2*(1-s) -# # definition of the derivatives of the relative permeabilities -# # relative permeabilty functions on subdomain 1 -# def rel_perm2w_prime(s): -# # relative permeabilty on subdomain1 -# return 3*s**2 -# -# def rel_perm2nw_prime(s): -# # relative permeabilty on subdomain1 -# return 2*(l_param_w1-s) +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 1 +def rel_perm2w_prime(s): + # relative permeabilty on subdomain1 + return 3*s**2 + +def rel_perm2nw_prime(s): + # relative permeabilty on subdomain1 + return -3*(1-s)**2 _rel_perm1w_prime = ft.partial(rel_perm1w_prime) _rel_perm1nw_prime = ft.partial(rel_perm1nw_prime) -# _rel_perm2w_prime = ft.partial(rel_perm2w_prime) -# _rel_perm2nw_prime = ft.partial(rel_perm2nw_prime) +_rel_perm2w_prime = ft.partial(rel_perm2w_prime) +_rel_perm2nw_prime = ft.partial(rel_perm2nw_prime) subdomain1_rel_perm_prime = { 'wetting': _rel_perm1w_prime, @@ -422,19 +469,19 @@ subdomain1_rel_perm_prime = { } -# subdomain2_rel_perm_prime = { -# 'wetting': _rel_perm2w_prime, -# 'nonwetting': _rel_perm2nw_prime -# } +subdomain2_rel_perm_prime = { + 'wetting': _rel_perm2w_prime, + 'nonwetting': _rel_perm2nw_prime +} # dictionary of relative permeabilties on all domains. ka_prime = { 1: subdomain1_rel_perm_prime, 2: subdomain1_rel_perm_prime, - 3: subdomain1_rel_perm_prime, - 4: subdomain1_rel_perm_prime, - 5: subdomain1_rel_perm_prime, - 6: subdomain1_rel_perm_prime, + 3: subdomain2_rel_perm_prime, + 4: subdomain2_rel_perm_prime, + 5: subdomain2_rel_perm_prime, + 6: subdomain2_rel_perm_prime, } @@ -546,19 +593,20 @@ sat_pressure_relationship = { x, y = sym.symbols('x[0], x[1]') # needed by UFL t = sym.symbols('t', positive=True) + p_e_sym = { - 1: {'wetting': 1.0 - (1.0 + t*t)*(1.0 + (x-6.5)*(x-6.5) + (y-5.0)*(y-5.0)), - 'nonwetting': - 2 - t*(1 + (y-5.0) + x**2)**2 -sym.sqrt(2+t**2)*(1 + (y-5.0)) }, - 2: {'wetting': 1.0 - (1.0 + t*t)*(1.0 + (x-6.5)*(x-6.5) + (y-5.0)*(y-5.0)), - 'nonwetting': - 2 - t*(1 + (y-5.0) + x**2)**2 -sym.sqrt(2+t**2)*(1 + (y-5.0)) }, - 3: {'wetting': 1.0 - (1.0 + t*t)*(1.0 + (x-6.5)*(x-6.5)), - 'nonwetting': - 2 - t*(1 + (y-5.0) + x**2)**2 -sym.sqrt(2+t**2)*(1 + (y-5.0)) }, - 4: {'wetting': 1.0 - (1.0 + t*t)*(1.0 + (x-6.5)*(x-6.5)), - 'nonwetting': - 2 - t*(1 + (y-5.0) + x**2)**2 -sym.sqrt(2+t**2)*(1 + (y-5.0)) }, - 5: {'wetting': 1.0 - (1.0 + t*t)*(1.0 + (x-6.5)*(x-6.5)), - 'nonwetting': - 2 - t*(1 + (y-5.0) + x**2)**2 -sym.sqrt(2+t**2)*(1 + (y-5.0)) }, - 6: {'wetting': 1.0 - (1.0 + t*t)*(1.0 + (x-6.5)*(x-6.5)), - 'nonwetting': - 2 - t*(1 + (y-5.0) + x**2)**2 -sym.sqrt(2+t**2)*(1 + (y-5.0)) }, + 1: {'wetting': -5.0 - (1.0 + t*t)*(1.0 + x*x + y*y), + 'nonwetting': (-1 -t*(1.1 + y + x**2)) }, + 2: {'wetting': -5.0 - (1.0 + t*t)*(1.0 + x*x + y*y), + 'nonwetting': (-1 -t*(1.1 + y + x**2)) }, + 3: {'wetting': (-5.0 - (1.0 + t*t)*(1.0 + x*x)), + 'nonwetting': (-1 -t*(1 + x**2) - sym.sqrt(2+t**2)*(1+y)*y**2) }, + 4: {'wetting': (-5.0 - (1.0 + t*t)*(1.0 + x*x)), + 'nonwetting': (-1 -t*(1 + x**2) - sym.sqrt(2+t**2)*(1+y)*y**2) }, + 5: {'wetting': (-5.0 - (1.0 + t*t)*(1.0 + x*x)), + 'nonwetting': (-1 -t*(1 + x**2) - sym.sqrt(2+t**2)*(1+y)*y**2) }, + 6: {'wetting': (-5.0 - (1.0 + t*t)*(1.0 + x*x)), + 'nonwetting': (-1 -t*(1 + x**2) - sym.sqrt(2+t**2)*(1+y)*y**2) }, # 2: {'wetting': 1.0 - (1.0 + t*t)*(10.0 + x*x + (y-5.0)*(y-5.0)), # 'nonwetting': - 2 - t*(1 + (y-5.0) + x**2)**2 -sym.sqrt(2+t**2)*(1 + (y-5.0))}, # 3: {'wetting': 1.0 - (1.0 + t*t)*(10.0 + x*x + (y-5.0)*(y-5.0)*3*sym.sin(-2*t+2*x)*sym.sin(1/2*y-1.2*t)), @@ -576,86 +624,48 @@ p_e_sym = { # 6: p_e_sym[5]['nonwetting'] - p_e_sym[6]['wetting'] # } -pc_e_sym = { - 1: -p_e_sym[1]['wetting'], - 2: -p_e_sym[2]['wetting'], - 3: -p_e_sym[3]['wetting'], - 4: -p_e_sym[4]['wetting'], - 5: -p_e_sym[5]['wetting'], - 6: -p_e_sym[6]['wetting'] -} +# pc_e_sym = { +# 1: -p_e_sym[1]['wetting'], +# 2: -p_e_sym[2]['wetting'], +# 3: -p_e_sym[3]['wetting'], +# 4: -p_e_sym[4]['wetting'], +# 5: -p_e_sym[5]['wetting'], +# 6: -p_e_sym[6]['wetting'] +# } -# turn above symbolic code into exact solution for dolphin and -# construct the rhs that matches the above exact solution. -dtS = dict() -div_flux = dict() -source_expression = dict() -exact_solution = dict() -initial_condition = dict() +pc_e_sym = dict() for subdomain, isR in isRichards.items(): - dtS.update({subdomain: dict()}) - div_flux.update({subdomain: dict()}) - source_expression.update({subdomain: dict()}) - exact_solution.update({subdomain: dict()}) - initial_condition.update({subdomain: dict()}) if isR: - subdomain_has_phases = ["wetting"] + pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting']}) else: - subdomain_has_phases = ["wetting", "nonwetting"] - - # conditional for S_pc_prime - pc = pc_e_sym[subdomain] - dtpc = sym.diff(pc, t, 1) - dxpc = sym.diff(pc, x, 1) - dypc = sym.diff(pc, y, 1) - S = sym.Piecewise((S_pc_sym[subdomain](pc), pc > 0), (1, True)) - dS = sym.Piecewise((S_pc_sym_prime[subdomain](pc), pc > 0), (0, True)) - for phase in subdomain_has_phases: - # Turn above symbolic expression for exact solution into c code - exact_solution[subdomain].update( - {phase: sym.printing.ccode(p_e_sym[subdomain][phase])} - ) - # save the c code for initial conditions - initial_condition[subdomain].update( - {phase: sym.printing.ccode(p_e_sym[subdomain][phase].subs(t, 0))} - ) - if phase == "nonwetting": - dtS[subdomain].update( - {phase: -porosity[subdomain]*dS*dtpc} - ) - else: - dtS[subdomain].update( - {phase: porosity[subdomain]*dS*dtpc} - ) - pa = p_e_sym[subdomain][phase] - dxpa = sym.diff(pa, x, 1) - dxdxpa = sym.diff(pa, x, 2) - dypa = sym.diff(pa, y, 1) - dydypa = sym.diff(pa, y, 2) - mu = viscosity[subdomain][phase] - ka = relative_permeability[subdomain][phase] - dka = ka_prime[subdomain][phase] - rho = densities[subdomain][phase] - g = gravity_acceleration - - if phase == "nonwetting": - # x part of div(flux) for nonwetting - dxdxflux = -1/mu*dka(1-S)*dS*dxpc*dxpa + 1/mu*dxdxpa*ka(1-S) - # y part of div(flux) for nonwetting - dydyflux = -1/mu*dka(1-S)*dS*dypc*(dypa - rho*g) \ - + 1/mu*dydypa*ka(1-S) - else: - # x part of div(flux) for wetting - dxdxflux = 1/mu*dka(S)*dS*dxpc*dxpa + 1/mu*dxdxpa*ka(S) - # y part of div(flux) for wetting - dydyflux = 1/mu*dka(S)*dS*dypc*(dypa - rho*g) + 1/mu*dydypa*ka(S) - div_flux[subdomain].update({phase: dxdxflux + dydyflux}) - contructed_rhs = dtS[subdomain][phase] - div_flux[subdomain][phase] - source_expression[subdomain].update( - {phase: sym.printing.ccode(contructed_rhs)} - ) - # print(f"source_expression[{subdomain}][{phase}] =", source_expression[subdomain][phase]) + pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'] + - p_e_sym[subdomain]['wetting']}) + + +symbols = {"x": x, + "y": y, + "t": t} +# turn above symbolic code into exact solution for dolphin and +# construct the rhs that matches the above exact solution. +exact_solution_example = hlp.generate_exact_solution_expressions( + symbols=symbols, + isRichards=isRichards, + symbolic_pressure=p_e_sym, + symbolic_capillary_pressure=pc_e_sym, + saturation_pressure_relationship=S_pc_sym, + saturation_pressure_relationship_prime=S_pc_sym_prime, + viscosity=viscosity, + porosity=porosity, + relative_permeability=relative_permeability, + relative_permeability_prime=ka_prime, + densities=densities, + gravity_acceleration=gravity_acceleration, + include_gravity=include_gravity, + ) +source_expression = exact_solution_example['source'] +exact_solution = exact_solution_example['exact_solution'] +initial_condition = exact_solution_example['initial_condition'] # Dictionary of dirichlet boundary conditions. dirichletBC = dict() @@ -691,8 +701,9 @@ write_to_file = { } # initialise LDD simulation class -simulation = ldd.LDDsimulation(tol=1E-14, debug=True, LDDsolver_tol=1E-6) -simulation.set_parameters(output_dir="./output/", +simulation = ldd.LDDsimulation(tol=1E-14, debug=debugflag, LDDsolver_tol=solver_tol) +simulation.set_parameters(use_case = use_case, + output_dir=output_string, subdomain_def_points=subdomain_def_points, isRichards=isRichards, interface_def_points=interface_def_points, @@ -714,12 +725,12 @@ simulation.set_parameters(output_dir="./output/", dirichletBC_expression_strings=dirichletBC, exact_solution=exact_solution, densities=densities, - include_gravity=True, + include_gravity=include_gravity, write2file=write_to_file, ) simulation.initialise() # print(simulation.__dict__) -simulation.run() +simulation.run(analyse_condition=analyse_condition) # simulation.LDDsolver(time=0, debug=True, analyse_timestep=True) # df.info(parameters, True) -- GitLab