diff --git a/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch-realistic-different-model-change.py b/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/Archive/TP-TP-layered_soil_with_inner_patch-realistic-different-model-change.py similarity index 100% rename from Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch-realistic-different-model-change.py rename to Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/Archive/TP-TP-layered_soil_with_inner_patch-realistic-different-model-change.py diff --git a/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch-realistic-pure-dd.py b/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/Archive/TP-TP-layered_soil_with_inner_patch-realistic-pure-dd.py similarity index 100% rename from Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch-realistic-pure-dd.py rename to Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/Archive/TP-TP-layered_soil_with_inner_patch-realistic-pure-dd.py diff --git a/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch-realistic.py b/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/Archive/TP-TP-layered_soil_with_inner_patch-realistic.py similarity index 100% rename from Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch-realistic.py rename to Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/Archive/TP-TP-layered_soil_with_inner_patch-realistic.py diff --git a/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch.py b/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch.py index 7f57d615342ea219370704f223c714c9fe7df600..5a4362cd545b3bdd2dde25a93b010cf73ae03c90 100755 --- a/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch.py +++ b/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch.py @@ -36,7 +36,7 @@ thisfile = "TP-TP-layered_soil_with_inner_patch.py" # GENERAL SOLVER CONFIG ###################################################### # maximal iteration per timestep -max_iter_num = 300 +max_iter_num = 1000 FEM_Lagrange_degree = 1 # GRID AND MESH STUDY SPECIFICATIONS ######################################### @@ -46,8 +46,8 @@ resolutions = { # 2: 1e-6, # 4: 1e-6, # 8: 1e-6, - # 16: 5e-6, - 32: 8e-6, + 16: 8e-6, + # 32: 8e-6, # 64: 2e-6, # 128: 1e-6, # 256: 1e-6, @@ -61,23 +61,23 @@ timestep_size = 0.001 number_of_timesteps = 5 # LDD scheme parameters ###################################################### -Lw1 = 0.5 # /timestep_size -Lnw1 = 0.025 +Lw1 = 0.25 # /timestep_size +Lnw1 = 0.25 -Lw2 = 0.5 # /timestep_size -Lnw2 = 0.025 +Lw2 = 0.25 # /timestep_size +Lnw2 = 0.25 -Lw3 = 0.5 # /timestep_size -Lnw3 = 0.025 +Lw3 = 0.25 # /timestep_size +Lnw3 = 0.25 -Lw4 = 0.5 # /timestep_size -Lnw4 = 0.025 +Lw4 = 0.25 # /timestep_size +Lnw4 = 0.25 -Lw5 = 0.5 # /timestep_size -Lnw5 = 0.025 +Lw5 = 0.25 # /timestep_size +Lnw5 = 0.25 -Lw6 = 0.5 # /timestep_size -Lnw6 = 0.025 +Lw6 = 0.25 # /timestep_size +Lnw6 = 0.25 lambda12_w = 4 lambda12_nw = 4 @@ -106,7 +106,7 @@ lambda46_nw = 4 lambda56_w = 4 lambda56_nw = 4 -include_gravity = True +include_gravity = False debugflag = True analyse_condition = False @@ -161,7 +161,7 @@ output_string = "./output/{}-{}_timesteps{}_P{}".format( ) -# DOMAIN AND INTERFACE ####################################################### +# DOMAIN AND INTERFACES ####################################################### # global domain subdomain0_vertices = [df.Point(-1.0,-1.0), # df.Point(1.0,-1.0),# @@ -211,14 +211,18 @@ interface56_vertices = [interface46_vertices[1], interface34_vertices = [interface36_vertices[1], interface23_vertices[2]] -# interface36 -interface45_vertices = [interface56_vertices[0], - df.Point(0.7, -0.2), +# Interface 45 needs to be split, because of the shape. There can be triangles +# with two facets on the interface and this creates a rogue dof type error when +# integrating over that particular interface. Accordingly, the lambda_param +# dictionary has two entries for that interface. +interface45_vertices_a = [interface56_vertices[0], + df.Point(0.7, -0.2),#df.Point(0.7, -0.2), + ] +interface45_vertices_b = [df.Point(0.7, -0.2),#df.Point(0.7, -0.2), interface25_vertices[0] ] - # interface_vertices introduces a global numbering of interfaces. interface_def_points = [interface12_vertices, interface23_vertices, @@ -226,11 +230,11 @@ interface_def_points = [interface12_vertices, interface25_vertices, interface34_vertices, interface36_vertices, - interface45_vertices, + interface45_vertices_a, + interface45_vertices_b, interface46_vertices, interface56_vertices, ] - adjacent_subdomains = [[1,2], [2,3], [2,4], @@ -238,6 +242,7 @@ adjacent_subdomains = [[1,2], [3,4], [3,6], [4,5], + [4,5], [4,6], [5,6] ] @@ -247,18 +252,17 @@ subdomain1_vertices = [interface12_vertices[0], interface12_vertices[1], interface12_vertices[2], interface12_vertices[3], - interface12_vertices[4], # southern boundary, 12 interface - subdomain0_vertices[2], # eastern boundary, outer boundary - subdomain0_vertices[3]] # northern boundary, outer on_boundary + interface12_vertices[4], # southern boundary, 12 interface + subdomain0_vertices[2], # eastern boundary, outer boundary + subdomain0_vertices[3]] # northern boundary, outer on_boundary # vertex coordinates of the outer boundaries. If it can not be specified as a -# polygon, use an entry per boundary polygon. -# This information is used for defining +# polygon, use an entry per boundary polygon. This information is used for defining # the Dirichlet boundary conditions. If a domain is completely internal, the # dictionary entry should be 0: None subdomain1_outer_boundary_verts = { - 0: [subdomain1_vertices[4], - subdomain1_vertices[5], # eastern boundary, outer boundary + 0: [subdomain1_vertices[4], # + subdomain1_vertices[5], # eastern boundary, outer boundary subdomain1_vertices[6], subdomain1_vertices[0]] } @@ -268,12 +272,12 @@ subdomain2_vertices = [interface23_vertices[0], interface23_vertices[1], interface23_vertices[2], interface24_vertices[1], - interface25_vertices[1], # southern boundary, 23 interface - subdomain1_vertices[4], # eastern boundary, outer boundary + interface25_vertices[1], # southern boundary, 23 interface + subdomain1_vertices[4], # eastern boundary, outer boundary subdomain1_vertices[3], subdomain1_vertices[2], subdomain1_vertices[1], - subdomain1_vertices[0] ] # northern boundary, 12 interface + subdomain1_vertices[0] ] # northern boundary, 12 interface subdomain2_outer_boundary_verts = { 0: [subdomain2_vertices[9], @@ -301,7 +305,8 @@ subdomain3_outer_boundary_verts = { # subdomain3 subdomain4_vertices = [interface46_vertices[0], interface46_vertices[1], - interface45_vertices[1], + # interface45_vertices[1], + interface45_vertices_a[1], interface24_vertices[1], interface24_vertices[0], interface34_vertices[1] @@ -314,10 +319,11 @@ subdomain5_vertices = [interface56_vertices[0], interface56_vertices[2], interface25_vertices[1], interface25_vertices[0], - interface45_vertices[1], - interface45_vertices[0] + interface45_vertices_b[1], + interface45_vertices_b[0] ] + subdomain5_outer_boundary_verts = { 0: [subdomain5_vertices[2], subdomain5_vertices[3]] @@ -450,32 +456,34 @@ L = { # interface25_vertices, # interface34_vertices, # interface36_vertices, -# interface45_vertices, +# interface45_vertices_a, +# interface45_vertices_b, # interface46_vertices, # interface56_vertices, # ] lambda_param = { 0: {'wetting': lambda12_w, - 'nonwetting': lambda12_nw},# + 'nonwetting': lambda12_nw}, 1: {'wetting': lambda23_w, - 'nonwetting': lambda23_nw},# + 'nonwetting': lambda23_nw}, 2: {'wetting': lambda24_w, - 'nonwetting': lambda24_nw},# + 'nonwetting': lambda24_nw}, 3: {'wetting': lambda25_w, - 'nonwetting': lambda25_nw},# + 'nonwetting': lambda25_nw}, 4: {'wetting': lambda34_w, - 'nonwetting': lambda34_nw},# + 'nonwetting': lambda34_nw}, 5: {'wetting': lambda36_w, - 'nonwetting': lambda36_nw},# + 'nonwetting': lambda36_nw}, 6: {'wetting': lambda45_w, - 'nonwetting': lambda45_nw},# - 7: {'wetting': lambda46_w, - 'nonwetting': lambda46_nw},# - 8: {'wetting': lambda56_w, - 'nonwetting': lambda56_nw},# + 'nonwetting': lambda45_nw}, + 7: {'wetting': lambda45_w, + 'nonwetting': lambda45_nw}, + 8: {'wetting': lambda46_w, + 'nonwetting': lambda46_nw}, + 9: {'wetting': lambda56_w, + 'nonwetting': lambda56_nw}, } - # after Lewis, see pdf file intrinsic_permeability = { 1: 0.01, # sand @@ -853,19 +861,13 @@ p_e_sym = { 2: {'wetting': -6.0 - (1.0 + t*t)*(1.0 + x*x + y*y), 'nonwetting': (-1 -t*(1.1 + y + x**2)) }, 3: {'wetting': (-6.0 - (1.0 + t*t)*(1.0 + x*x)), - 'nonwetting': (-1 -t*(1.0 + x**2) - sym.sqrt(2+t**2)*(1+y)*y**2) }, + 'nonwetting': (-1 -t*(1.0 + x**2) - sym.sin(2+t**2)*y**2) }, 4: {'wetting': (-6.0 - (1.0 + t*t)*(1.0 + x*x)), - 'nonwetting': (-1 -t*(1.0 + x**2) - sym.sqrt(2+t**2)*(1+y)*y**2) }, + 'nonwetting': (-1 -t*(1.0 + x**2) - sym.sin(2+t**2)*y**2) }, 5: {'wetting': (-6.0 - (1.0 + t*t)*(1.0 + x*x)), - 'nonwetting': (-1 -t*(1.0 + x**2) - sym.sqrt(2+t**2)*(1+y)*y**2) }, + 'nonwetting': (-1 -t*(1.0 + x**2) - sym.sin(2+t**2)*y**2) }, 6: {'wetting': (-6.0 - (1.0 + t*t)*(1.0 + x*x)), - 'nonwetting': (-1 -t*(1.0 + x**2) - sym.sqrt(2+t**2)*(1+y)*y**2) }, - # 2: {'wetting': 1.0 - (1.0 + t*t)*(10.0 + x*x + (y-6.0)*(y-6.0)), - # 'nonwetting': - 2 - t*(1.0 + (y-6.0) + x**2)**2 -sym.sqrt(2+t**2)*(1.0 + (y-6.0))}, - # 3: {'wetting': 1.0 - (1.0 + t*t)*(10.0 + x*x + (y-6.0)*(y-6.0)*3*sym.sin(-2*t+2*x)*sym.sin(1/2*y-1.2*t)), - # 'nonwetting': - 2 - t*(1.0 + x**2)**2 -sym.sqrt(2+t**2)}, - # 4: {'wetting': 1.0 - (1.0 + t*t)*(10.0 + x*x + (y-6.0)*(y-6.0)*3*sym.sin(-2*t+2*x)*sym.sin(1/2*y-1.2*t)), - # 'nonwetting': - 2 - t*(1.0 + x**2)**2 -sym.sqrt(2+t**2)} + 'nonwetting': (-1 -t*(1.0 + x**2) - sym.sin(2+t**2)*y**2) }, } diff --git a/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/mesh_study/TP-TP-layered_soil_with_inner_patch-realistic-different-model-change_mesh_study.py b/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/mesh_study/Archive/TP-TP-layered_soil_with_inner_patch-realistic-different-model-change_mesh_study.py similarity index 100% rename from Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/mesh_study/TP-TP-layered_soil_with_inner_patch-realistic-different-model-change_mesh_study.py rename to Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/mesh_study/Archive/TP-TP-layered_soil_with_inner_patch-realistic-different-model-change_mesh_study.py diff --git a/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/mesh_study/TP-TP-layered_soil_with_inner_patch-realistic-pure-dd_mesh_study.py b/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/mesh_study/Archive/TP-TP-layered_soil_with_inner_patch-realistic-pure-dd_mesh_study.py similarity index 100% rename from Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/mesh_study/TP-TP-layered_soil_with_inner_patch-realistic-pure-dd_mesh_study.py rename to Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/mesh_study/Archive/TP-TP-layered_soil_with_inner_patch-realistic-pure-dd_mesh_study.py diff --git a/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/mesh_study/TP-TP-layered_soil_with_inner_patch_mesh_study.py b/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/mesh_study/TP-TP-layered_soil_with_inner_patch_mesh_study.py index 7220ca87ba8c41018658e902bad090d7a1f94ab2..212c5f4324b01e49220d585bb8c44c768575ce31 100755 --- a/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/mesh_study/TP-TP-layered_soil_with_inner_patch_mesh_study.py +++ b/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/mesh_study/TP-TP-layered_soil_with_inner_patch_mesh_study.py @@ -1,84 +1,147 @@ #!/usr/bin/python3 -"""This program sets up a domain together with a decomposition into subdomains -modelling layered soil. This is used for our LDD article with tp-tp and tp-r -coupling. +"""TP-TP layered soil with inner patch simulation. -Along with the subdomains and the mesh domain markers are set upself. -The resulting mesh is saved into files for later use. +This program sets up an LDD simulation """ -#!/usr/bin/python3 import dolfin as df -import mshr -import numpy as np import sympy as sym -import typing as tp import functools as ft -import domainPatch as dp import LDDsimulation as ldd import helpers as hlp import datetime import os import pandas as pd +# init sympy session +sym.init_printing() + +# PREREQUISITS ############################################################### +# check if output directory "./output" exists. This will be used in +# the generation of the output string. +if not os.path.exists('./output'): + os.mkdir('./output') + print("Directory ", './output', " created ") +else: + print("Directory ", './output', " already exists. Will use as output \ + directory") + date = datetime.datetime.now() datestr = date.strftime("%Y-%m-%d") -# init sympy session -sym.init_printing() -# solver_tol = 6E-7 -use_case = "TP-TP-layered-soil-pure-dd" -max_iter_num = 200 +# Name of the usecase that will be printed during simulation. +use_case = "TP-TP-layered-soil-inner-patch-realistic" +# The name of this very file. Needed for creating log output. +thisfile = "TP-TP-layered_soil_with_inner_patch_mesh_study.py" + +# GENERAL SOLVER CONFIG ###################################################### +# maximal iteration per timestep +max_iter_num = 1000 FEM_Lagrange_degree = 1 + +# GRID AND MESH STUDY SPECIFICATIONS ######################################### mesh_study = True resolutions = { - 1: 5e-4, # h=2 - 2: 5e-4, # h=1.1180 - 4: 3e-4, # h=0.5590 - 8: 1e-6, # h=0.2814 - 16: 1e-6, # h=0.1412 - 32: 1e-6, # h=0.0706 - 64: 1e-6, # 0.03535 - 128: 1e-6, # 0.01768 - # 256: 1e-6 # 0.00884 + # 1: 1e-6, + # 2: 1e-6, + # 4: 1e-6, + # 8: 1e-6, + 16: 8e-6, + # 32: 8e-6, + # 64: 2e-6, + # 128: 1e-6, + # 256: 1e-6, } -############ GRID ####################### -# mesh_resolution = 20 -timestep_size = 0.005 -number_of_timesteps = 140 -plot_timestep_every = 1 -# decide how many timesteps you want analysed. Analysed means, that we write out -# subsequent errors of the L-iteration within the timestep. -number_of_timesteps_to_analyse = 6 -starttimes = [0.0] +# starttimes gives a list of starttimes to run the simulation from. +# The list is looped over and a simulation is run with t_0 as initial time +# for each element t_0 in starttimes. +starttimes = [0.3] +timestep_size = 0.001 +number_of_timesteps = 5 + +# LDD scheme parameters ###################################################### +Lw1 = 0.25 # /timestep_size +Lnw1 = 0.25 + +Lw2 = 0.25 # /timestep_size +Lnw2 = 0.25 + +Lw3 = 0.25 # /timestep_size +Lnw3 = 0.25 + +Lw4 = 0.25 # /timestep_size +Lnw4 = 0.25 + +Lw5 = 0.25 # /timestep_size +Lnw5 = 0.25 + +Lw6 = 0.25 # /timestep_size +Lnw6 = 0.25 + +lambda12_w = 4 +lambda12_nw = 4 + +lambda23_w = 4 +lambda23_nw = 4 + +lambda24_w = 4 +lambda24_nw= 4 + +lambda25_w= 4 +lambda25_nw= 4 + +lambda34_w = 4 +lambda34_nw = 4 -Lw = 0.025 #/timestep_size -Lnw=Lw +lambda36_w = 4 +lambda36_nw = 4 -lambda_w = 8 -lambda_nw = 8 +lambda45_w = 4 +lambda45_nw = 4 + +lambda46_w = 4 +lambda46_nw = 4 + +lambda56_w = 4 +lambda56_nw = 4 include_gravity = False -debugflag = False -analyse_condition = True +debugflag = True +analyse_condition = False -if mesh_study: - output_string = "./output/{}-{}_timesteps{}_P{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree) -else: - for tol in resolutions.values(): - solver_tol = tol - output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol) +# I/O CONFIG ################################################################# +# when number_of_timesteps is high, it might take a long time to write all +# timesteps to disk. Therefore, you can choose to only write data of every +# plot_timestep_every timestep to disk. +plot_timestep_every = 1 +# Decide how many timesteps you want analysed. Analysed means, that +# subsequent errors of the L-iteration within the timestep are written out. +number_of_timesteps_to_analyse = 5 -# toggle what should be written to files +# fine grained control over data to be written to disk in the mesh study case +# as well as for a regular simuation for a fixed grid. if mesh_study: write_to_file = { + # output the relative errornorm (integration in space) w.r.t. an exact + # solution for each timestep into a csv file. 'space_errornorms': True, + # save the mesh and marker functions to disk 'meshes_and_markers': True, + # save xdmf/h5 data for each LDD iteration for timesteps determined by + # number_of_timesteps_to_analyse. I/O intensive! 'L_iterations_per_timestep': False, + # save solution to xdmf/h5. 'solutions': True, + # save absolute differences w.r.t an exact solution to xdmf/h5 file + # to monitor where on the domains errors happen 'absolute_differences': True, + # analyise condition numbers for timesteps determined by + # number_of_timesteps_to_analyse and save them over time to csv. 'condition_numbers': analyse_condition, + # output subsequent iteration errors measured in L^2 to csv for + # timesteps determined by number_of_timesteps_to_analyse. + # Usefull to monitor convergence of the acutal LDD solver. 'subsequent_errors': True } else: @@ -92,6 +155,13 @@ else: 'subsequent_errors': True } +# OUTPUT FILE STRING ######################################################### +output_string = "./output/{}-{}_timesteps{}_P{}".format( + datestr, use_case, number_of_timesteps, FEM_Lagrange_degree + ) + + +# DOMAIN AND INTERFACES ####################################################### # global domain subdomain0_vertices = [df.Point(-1.0,-1.0), # df.Point(1.0,-1.0),# @@ -103,6 +173,80 @@ interface12_vertices = [df.Point(-1.0, 0.8), df.Point(0.5, 0.9), df.Point(0.8, 0.7), df.Point(1.0, 0.65)] + + + # interface23 +interface23_vertices = [df.Point(-1.0, 0.0), + df.Point(-0.35, 0.0), + # df.Point(6.5, 4.5), + df.Point(0.0, 0.0)] + +interface24_vertices = [interface23_vertices[2], + df.Point(0.6, 0.0), + ] + +interface25_vertices = [interface24_vertices[1], + df.Point(1.0, 0.0) + ] + + +interface32_vertices = [interface23_vertices[2], + interface23_vertices[1], + interface23_vertices[0]] + + +interface36_vertices = [df.Point(-1.0, -0.6), + df.Point(-0.6, -0.45)] + + +interface46_vertices = [interface36_vertices[1], + df.Point(0.3, -0.25)] + +interface56_vertices = [interface46_vertices[1], + df.Point(0.65, -0.6), + df.Point(1.0, -0.7)] + + + + +interface34_vertices = [interface36_vertices[1], + interface23_vertices[2]] + +# Interface 45 needs to be split, because of the shape. There can be triangles +# with two facets on the interface and this creates a rogue dof type error when +# integrating over that particular interface. Accordingly, the lambda_param +# dictionary has two entries for that interface. +interface45_vertices_a = [interface56_vertices[0], + df.Point(0.7, -0.2),#df.Point(0.7, -0.2), + ] +interface45_vertices_b = [df.Point(0.7, -0.2),#df.Point(0.7, -0.2), + interface25_vertices[0] + ] + +# interface_vertices introduces a global numbering of interfaces. +interface_def_points = [interface12_vertices, + interface23_vertices, + interface24_vertices, + interface25_vertices, + interface34_vertices, + interface36_vertices, + interface45_vertices_a, + interface45_vertices_b, + interface46_vertices, + interface56_vertices, + ] +adjacent_subdomains = [[1,2], + [2,3], + [2,4], + [2,5], + [3,4], + [3,6], + [4,5], + [4,5], + [4,6], + [5,6] + ] + # subdomain1. subdomain1_vertices = [interface12_vertices[0], interface12_vertices[1], @@ -117,32 +261,18 @@ subdomain1_vertices = [interface12_vertices[0], # the Dirichlet boundary conditions. If a domain is completely internal, the # dictionary entry should be 0: None subdomain1_outer_boundary_verts = { - 0: [interface12_vertices[4], # - subdomain0_vertices[2], # eastern boundary, outer boundary - subdomain0_vertices[3], - interface12_vertices[0]] + 0: [subdomain1_vertices[4], # + subdomain1_vertices[5], # eastern boundary, outer boundary + subdomain1_vertices[6], + subdomain1_vertices[0]] } - -# interface23 -interface23_vertices = [df.Point(-1.0, 0.0), - df.Point(-0.35, 0.0), - # df.Point(6.5, 4.5), - df.Point(0.0, 0.0), - df.Point(0.5, 0.0), - # df.Point(11.5, 3.5), - # df.Point(13.0, 3) - df.Point(0.85, 0.0), - df.Point(1.0, 0.0) - ] - #subdomain1 subdomain2_vertices = [interface23_vertices[0], interface23_vertices[1], interface23_vertices[2], - interface23_vertices[3], - interface23_vertices[4], - interface23_vertices[5], # southern boundary, 23 interface + interface24_vertices[1], + interface25_vertices[1], # southern boundary, 23 interface subdomain1_vertices[4], # eastern boundary, outer boundary subdomain1_vertices[3], subdomain1_vertices[2], @@ -150,54 +280,71 @@ subdomain2_vertices = [interface23_vertices[0], subdomain1_vertices[0] ] # northern boundary, 12 interface subdomain2_outer_boundary_verts = { - 0: [interface23_vertices[5], - subdomain1_vertices[4]], - 1: [subdomain1_vertices[0], - interface23_vertices[0]] + 0: [subdomain2_vertices[9], + subdomain2_vertices[0]], + 1: [subdomain2_vertices[4], + subdomain2_vertices[5]] } -# interface34 -interface34_vertices = [df.Point(-1.0, -0.6), - df.Point(-0.6, -0.45), - df.Point(0.3, -0.25), - df.Point(0.65, -0.6), - df.Point(1.0, -0.7)] - -# subdomain3 -subdomain3_vertices = [interface34_vertices[0], - interface34_vertices[1], - interface34_vertices[2], - interface34_vertices[3], - interface34_vertices[4], # southern boundary, 34 interface - subdomain2_vertices[5], # eastern boundary, outer boundary - subdomain2_vertices[4], - subdomain2_vertices[3], - subdomain2_vertices[2], - subdomain2_vertices[1], - subdomain2_vertices[0] ] # northern boundary, 23 interface +subdomain3_vertices = [interface36_vertices[0], + interface36_vertices[1], + # interface34_vertices[0], + interface34_vertices[1], + # interface32_vertices[0], + interface32_vertices[1], + interface32_vertices[2] + ] subdomain3_outer_boundary_verts = { - 0: [interface34_vertices[4], - subdomain2_vertices[5]], - 1: [subdomain2_vertices[0], - interface34_vertices[0]] + 0: [subdomain3_vertices[4], + subdomain3_vertices[0]] } -# subdomain4 -subdomain4_vertices = [subdomain0_vertices[0], - subdomain0_vertices[1], # southern boundary, outer boundary - subdomain3_vertices[4],# eastern boundary, outer boundary - subdomain3_vertices[3], - subdomain3_vertices[2], - subdomain3_vertices[1], - subdomain3_vertices[0] ] # northern boundary, 34 interface - -subdomain4_outer_boundary_verts = { - 0: [subdomain4_vertices[6], - subdomain4_vertices[0], - subdomain4_vertices[1], - subdomain4_vertices[2]] + +# subdomain3 +subdomain4_vertices = [interface46_vertices[0], + interface46_vertices[1], + # interface45_vertices[1], + interface45_vertices_a[1], + interface24_vertices[1], + interface24_vertices[0], + interface34_vertices[1] + ] + +subdomain4_outer_boundary_verts = None + +subdomain5_vertices = [interface56_vertices[0], + interface56_vertices[1], + interface56_vertices[2], + interface25_vertices[1], + interface25_vertices[0], + interface45_vertices_b[1], + interface45_vertices_b[0] +] + + +subdomain5_outer_boundary_verts = { + 0: [subdomain5_vertices[2], + subdomain5_vertices[3]] +} + + + +subdomain6_vertices = [subdomain0_vertices[0], + subdomain0_vertices[1], # southern boundary, outer boundary + interface56_vertices[2], + interface56_vertices[1], + interface56_vertices[0], + interface36_vertices[1], + interface36_vertices[0] + ] + +subdomain6_outer_boundary_verts = { + 0: [subdomain6_vertices[6], + subdomain6_vertices[0], + subdomain6_vertices[1], + subdomain6_vertices[2]] } @@ -205,14 +352,12 @@ subdomain_def_points = [subdomain0_vertices,# subdomain1_vertices,# subdomain2_vertices,# subdomain3_vertices,# - subdomain4_vertices + subdomain4_vertices, + subdomain5_vertices, + subdomain6_vertices ] -# interface_vertices introduces a global numbering of interfaces. -interface_def_points = [interface12_vertices, interface23_vertices, interface34_vertices] -adjacent_subdomains = [[1,2], [2,3], [3,4]] - # if a subdomain has no outer boundary write None instead, i.e. # i: None # if i is the index of the inner subdomain. @@ -221,158 +366,342 @@ outer_boundary_def_points = { 1: subdomain1_outer_boundary_verts, 2: subdomain2_outer_boundary_verts, 3: subdomain3_outer_boundary_verts, - 4: subdomain4_outer_boundary_verts + 4: subdomain4_outer_boundary_verts, + 5: subdomain5_outer_boundary_verts, + 6: subdomain6_outer_boundary_verts } +# MODEL CONFIGURATION ######################################################### + isRichards = { 1: False, 2: False, 3: False, - 4: False + 4: False, + 5: False, + 6: False } -# isRichards = { -# 1: True, -# 2: True, -# 3: True, -# 4: True -# } # Dict of the form: { subdom_num : viscosity } viscosity = { - 1: {'wetting' :1, - 'nonwetting': 1}, - 2: {'wetting' :1, - 'nonwetting': 1}, - 3: {'wetting' :1, - 'nonwetting': 1}, - 4: {'wetting' :1, - 'nonwetting': 1}, + 1: {'wetting' :1.0, + 'nonwetting': 1/50}, + 2: {'wetting' :1.0, + 'nonwetting': 1/50}, + 3: {'wetting' :1.0, + 'nonwetting': 1/50}, + 4: {'wetting' :1.0, + 'nonwetting': 1/50}, + 5: {'wetting' :1.0, + 'nonwetting': 1/50}, + 6: {'wetting' :1.0, + 'nonwetting': 1/50}, } # Dict of the form: { subdom_num : density } densities = { - 1: {'wetting': 1, #997 - 'nonwetting':1}, #1.225}}, - 2: {'wetting': 1, #997 - 'nonwetting':1}, #1.225}}, - 3: {'wetting': 1, #997 - 'nonwetting':1}, #1.225}}, - 4: {'wetting': 1, #997 - 'nonwetting':1}, #1.225}} + 1: {'wetting': 997.0, #997 + 'nonwetting': 1.225}, #1}, #1.225}, + 2: {'wetting': 997.0, #997 + 'nonwetting': 1.225}, #1.225}, + 3: {'wetting': 997.0, #997 + 'nonwetting': 1.225}, #1.225}, + 4: {'wetting': 997.0, #997 + 'nonwetting': 1.225}, #1.225} + 5: {'wetting': 997.0, #997 + 'nonwetting': 1.225}, #1.225}, + 6: {'wetting': 997.0, #997 + 'nonwetting': 1.225} #1.225} } -gravity_acceleration = 1 +gravity_acceleration = 9.81 # porosities taken from # https://www.geotechdata.info/parameter/soil-porosity.html # Dict of the form: { subdom_num : porosity } porosity = { - 1: 1, #0.2, # Clayey gravels, clayey sandy gravels - 2: 1, #0.22, # Silty gravels, silty sandy gravels - 3: 1, #0.37, # Clayey sands - 4: 1, #0.2 # Silty or sandy clay + 1: 0.2, #0.2, # Clayey gravels, clayey sandy gravels + 2: 0.2, #0.22, # Silty gravels, silty sandy gravels + 3: 0.2, #0.37, # Clayey sands + 4: 0.2, #0.2 # Silty or sandy clay + 5: 0.2, # + 6: 0.2, # } # subdom_num : subdomain L for L-scheme L = { - 1: {'wetting' :Lw, - 'nonwetting': Lnw}, - 2: {'wetting' :Lw, - 'nonwetting': Lnw}, - 3: {'wetting' :Lw, - 'nonwetting': Lnw}, - 4: {'wetting' :Lw, - 'nonwetting': Lnw} + 1: {'wetting' :Lw1, + 'nonwetting': Lnw1}, + 2: {'wetting' :Lw2, + 'nonwetting': Lnw2}, + 3: {'wetting' :Lw3, + 'nonwetting': Lnw3}, + 4: {'wetting' :Lw4, + 'nonwetting': Lnw4}, + 5: {'wetting' :Lw5, + 'nonwetting': Lnw5}, + 6: {'wetting' :Lw6, + 'nonwetting': Lnw6} } -# subdom_num : lambda parameter for the L-scheme + +# interface_num : lambda parameter for the L-scheme on that interface. +# Note that interfaces are numbered starting from 0, because +# adjacent_subdomains is a list and not a dict. Historic fuckup, I know +# We have defined above as interfaces +# # interface_vertices introduces a global numbering of interfaces. +# interface_def_points = [interface12_vertices, +# interface23_vertices, +# interface24_vertices, +# interface25_vertices, +# interface34_vertices, +# interface36_vertices, +# interface45_vertices_a, +# interface45_vertices_b, +# interface46_vertices, +# interface56_vertices, +# ] lambda_param = { - 1: {'wetting': lambda_w, - 'nonwetting': lambda_nw},# - 2: {'wetting': lambda_w, - 'nonwetting': lambda_nw},# - 3: {'wetting': lambda_w, - 'nonwetting': lambda_nw},# - 4: {'wetting': lambda_w, - 'nonwetting': lambda_nw},# + 0: {'wetting': lambda12_w, + 'nonwetting': lambda12_nw}, + 1: {'wetting': lambda23_w, + 'nonwetting': lambda23_nw}, + 2: {'wetting': lambda24_w, + 'nonwetting': lambda24_nw}, + 3: {'wetting': lambda25_w, + 'nonwetting': lambda25_nw}, + 4: {'wetting': lambda34_w, + 'nonwetting': lambda34_nw}, + 5: {'wetting': lambda36_w, + 'nonwetting': lambda36_nw}, + 6: {'wetting': lambda45_w, + 'nonwetting': lambda45_nw}, + 7: {'wetting': lambda45_w, + 'nonwetting': lambda45_nw}, + 8: {'wetting': lambda46_w, + 'nonwetting': lambda46_nw}, + 9: {'wetting': lambda56_w, + 'nonwetting': lambda56_nw}, +} + +# after Lewis, see pdf file +intrinsic_permeability = { + 1: 0.01, # sand + 2: 0.01, # sand, there is a range + 3: 0.01, #10e-2, # clay has a range + 4: 0.01, #10e-3 + 5: 0.01, #10e-2, # clay has a range + 6: 0.01, #10e-3 } -## relative permeabilty functions on subdomain 1 +# relative permeabilty functions on subdomain 1 def rel_perm1w(s): # relative permeabilty wetting on subdomain1 - return s**2 + return intrinsic_permeability[1]*s**2 def rel_perm1nw(s): # relative permeabilty nonwetting on subdomain1 - return (1-s)**2 + return intrinsic_permeability[1]*(1-s)**2 -## relative permeabilty functions on subdomain 2 +# relative permeabilty functions on subdomain 2 def rel_perm2w(s): # relative permeabilty wetting on subdomain2 - return s**2 + return intrinsic_permeability[2]*s**2 def rel_perm2nw(s): - # relative permeabilty nonwetting on subdosym.cos(0.8*t - (0.8*x + 1/7*y))main2 - return (1-s)**2 + # relative permeabilty nonwetting on subdomain2 + return intrinsic_permeability[2]*(1-s)**2 + + +# relative permeabilty functions on subdomain 3 +def rel_perm3w(s): + # relative permeabilty wetting on subdomain3 + return intrinsic_permeability[3]*s**3 + + +def rel_perm3nw(s): + # relative permeabilty nonwetting on subdomain3 + return intrinsic_permeability[3]*(1-s)**3 + + +# relative permeabilty functions on subdomain 4 +def rel_perm4w(s): + # relative permeabilty wetting on subdomain4 + return intrinsic_permeability[4]*s**3 + + +def rel_perm4nw(s): + # relative permeabilty nonwetting on subdomain4 + return intrinsic_permeability[4]*(1-s)**3 + + +# relative permeabilty functions on subdomain 5 +def rel_perm5w(s): + # relative permeabilty wetting on subdomain5 + return intrinsic_permeability[5]*s**3 + + +def rel_perm5nw(s): + # relative permeabilty nonwetting on subdomain5 + return intrinsic_permeability[5]*(1-s)**3 + + +# relative permeabilty functions on subdomain 6 +def rel_perm6w(s): + # relative permeabilty wetting on subdomain6 + return intrinsic_permeability[6]*s**3 + + +def rel_perm6nw(s): + # relative permeabilty nonwetting on subdomain6 + return intrinsic_permeability[6]*(1-s)**3 _rel_perm1w = ft.partial(rel_perm1w) _rel_perm1nw = ft.partial(rel_perm1nw) + _rel_perm2w = ft.partial(rel_perm2w) _rel_perm2nw = ft.partial(rel_perm2nw) +_rel_perm3w = ft.partial(rel_perm3w) +_rel_perm3nw = ft.partial(rel_perm3nw) + +_rel_perm4w = ft.partial(rel_perm4w) +_rel_perm4nw = ft.partial(rel_perm4nw) + +_rel_perm5w = ft.partial(rel_perm5w) +_rel_perm5nw = ft.partial(rel_perm5nw) + +_rel_perm6w = ft.partial(rel_perm6w) +_rel_perm6nw = ft.partial(rel_perm6nw) + subdomain1_rel_perm = { - 'wetting': _rel_perm1w,# + 'wetting': _rel_perm1w, 'nonwetting': _rel_perm1nw } subdomain2_rel_perm = { - 'wetting': _rel_perm2w,# + 'wetting': _rel_perm2w, 'nonwetting': _rel_perm2nw } -# _rel_perm3 = ft.partial(rel_perm2) -# subdomain3_rel_perm = subdomain2_rel_perm.copy() -# -# _rel_perm4 = ft.partial(rel_perm1) -# subdomain4_rel_perm = subdomain1_rel_perm.copy() +subdomain3_rel_perm = { + 'wetting': _rel_perm3w, + 'nonwetting': _rel_perm3nw +} + +subdomain4_rel_perm = { + 'wetting': _rel_perm4w, + 'nonwetting': _rel_perm4nw +} + +subdomain5_rel_perm = { + 'wetting': _rel_perm5w, + 'nonwetting': _rel_perm5nw +} + +subdomain6_rel_perm = { + 'wetting': _rel_perm6w, + 'nonwetting': _rel_perm6nw +} # dictionary of relative permeabilties on all domains. relative_permeability = { 1: subdomain1_rel_perm, - 2: subdomain1_rel_perm, - 3: subdomain2_rel_perm, - 4: subdomain2_rel_perm + 2: subdomain2_rel_perm, + 3: subdomain3_rel_perm, + 4: subdomain4_rel_perm, + 5: subdomain5_rel_perm, + 6: subdomain6_rel_perm } + # definition of the derivatives of the relative permeabilities # relative permeabilty functions on subdomain 1 def rel_perm1w_prime(s): # relative permeabilty on subdomain1 - return 2*s + return intrinsic_permeability[1]*2*s + def rel_perm1nw_prime(s): # relative permeabilty on subdomain1 - return -2*(1-s) + return -1*intrinsic_permeability[1]*2*(1-s) + -# definition of the derivatives of the relative permeabilities -# relative permeabilty functions on subdomain 1 def rel_perm2w_prime(s): - # relative permeabilty on subdomain1 - return 2*s + # relative permeabilty on subdomain2 + return intrinsic_permeability[2]*2*s + def rel_perm2nw_prime(s): - # relative permeabilty on subdomain1 - return -2*(1-s) + # relative permeabilty on subdomain2 + return -1*intrinsic_permeability[2]*2*(1-s) + + +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 3 +def rel_perm3w_prime(s): + # relative permeabilty on subdomain3 + return intrinsic_permeability[3]*3*s**2 + + +def rel_perm3nw_prime(s): + # relative permeabilty on subdomain3 + return -1*intrinsic_permeability[3]*3*(1-s)**2 + + +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 4 +def rel_perm4w_prime(s): + # relative permeabilty on subdomain4 + return intrinsic_permeability[4]*3*s**2 + + +def rel_perm4nw_prime(s): + # relative permeabilty on subdomain4 + return -1*intrinsic_permeability[4]*3*(1-s)**2 + + +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 5 +def rel_perm5w_prime(s): + # relative permeabilty on subdomain5 + return intrinsic_permeability[5]*3*s**2 + + +def rel_perm5nw_prime(s): + # relative permeabilty on subdomain5 + return -1*intrinsic_permeability[5]*3*(1-s)**2 + + +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 6 +def rel_perm6w_prime(s): + # relative permeabilty on subdomain6 + return intrinsic_permeability[6]*3*s**2 + + +def rel_perm6nw_prime(s): + # relative permeabilty on subdomain6 + return -1*intrinsic_permeability[6]*3*(1-s)**2 + _rel_perm1w_prime = ft.partial(rel_perm1w_prime) _rel_perm1nw_prime = ft.partial(rel_perm1nw_prime) _rel_perm2w_prime = ft.partial(rel_perm2w_prime) _rel_perm2nw_prime = ft.partial(rel_perm2nw_prime) +_rel_perm3w_prime = ft.partial(rel_perm3w_prime) +_rel_perm3nw_prime = ft.partial(rel_perm3nw_prime) +_rel_perm4w_prime = ft.partial(rel_perm4w_prime) +_rel_perm4nw_prime = ft.partial(rel_perm4nw_prime) +_rel_perm5w_prime = ft.partial(rel_perm5w_prime) +_rel_perm5nw_prime = ft.partial(rel_perm5nw_prime) +_rel_perm6w_prime = ft.partial(rel_perm6w_prime) +_rel_perm6nw_prime = ft.partial(rel_perm6nw_prime) subdomain1_rel_perm_prime = { 'wetting': _rel_perm1w_prime, @@ -385,110 +714,170 @@ subdomain2_rel_perm_prime = { 'nonwetting': _rel_perm2nw_prime } +subdomain3_rel_perm_prime = { + 'wetting': _rel_perm3w_prime, + 'nonwetting': _rel_perm3nw_prime +} + + +subdomain4_rel_perm_prime = { + 'wetting': _rel_perm4w_prime, + 'nonwetting': _rel_perm4nw_prime +} + +subdomain5_rel_perm_prime = { + 'wetting': _rel_perm5w_prime, + 'nonwetting': _rel_perm5nw_prime +} + +subdomain6_rel_perm_prime = { + 'wetting': _rel_perm6w_prime, + 'nonwetting': _rel_perm6nw_prime +} + + # dictionary of relative permeabilties on all domains. ka_prime = { 1: subdomain1_rel_perm_prime, - 2: subdomain1_rel_perm_prime, - 3: subdomain2_rel_perm_prime, - 4: subdomain2_rel_perm_prime + 2: subdomain2_rel_perm_prime, + 3: subdomain3_rel_perm_prime, + 4: subdomain4_rel_perm_prime, + 5: subdomain5_rel_perm_prime, + 6: subdomain6_rel_perm_prime, } -# S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where -# we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw -# this function needs to be monotonically decreasing in the capillary pressure pc. -# since in the richards case pc=-pw, this becomes as a function of pw a mono +# S-pc-relation ship. We use the van Genuchten approach, i.e. +# pc = 1/alpha*(S^{-1/m} -1)^1/n, where we set alpha = 0, assume +# m = 1-1/n (see Helmig) and assume that residual saturation is Sw +# this function needs to be monotonically decreasing in the capillary pressure +# pc. +# Since in the richards case pc=-pw, this becomes as a function of pw a mono # tonically INCREASING function like in our Richards-Richards paper. However # since we unify the treatment in the code for Richards and two-phase, we need # the same requierment # for both cases, two-phase and Richards. -def saturation(pc, n_index, alpha): +# def saturation(pc, n_index, alpha): +# # inverse capillary pressure-saturation-relationship +# return df.conditional(pc > 0, 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)), 1) +# +# # S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where +# # we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw +# def saturation_sym(pc, n_index, alpha): +# # inverse capillary pressure-saturation-relationship +# #df.conditional(pc > 0, +# return 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)) +# +# +# # derivative of S-pc relationship with respect to pc. This is needed for the +# # construction of a analytic solution. +# def saturation_sym_prime(pc, n_index, alpha): +# # inverse capillary pressure-saturation-relationship +# return -(alpha*(n_index - 1)*(alpha*pc)**(n_index - 1)) / ( (1 + (alpha*pc)**n_index)**((2*n_index - 1)/n_index) ) +## +# # note that the conditional definition of S-pc in the nonsymbolic part will be +# # incorporated in the construction of the exact solution below. +# S_pc_sym = { +# 1: ft.partial(saturation_sym, n_index=3, alpha=0.001), +# 2: ft.partial(saturation_sym, n_index=3, alpha=0.001), +# 3: ft.partial(saturation_sym, n_index=3, alpha=0.001), +# 4: ft.partial(saturation_sym, n_index=3, alpha=0.001), +# 5: ft.partial(saturation_sym, n_index=3, alpha=0.001), +# 6: ft.partial(saturation_sym, n_index=3, alpha=0.001) +# } +# +# S_pc_sym_prime = { +# 1: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), +# 2: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), +# 3: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), +# 4: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), +# 5: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), +# 6: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001) +# } +# +# sat_pressure_relationship = { +# 1: ft.partial(saturation, n_index=3, alpha=0.001), +# 2: ft.partial(saturation, n_index=3, alpha=0.001), +# 3: ft.partial(saturation, n_index=3, alpha=0.001), +# 4: ft.partial(saturation, n_index=3, alpha=0.001), +# 5: ft.partial(saturation, n_index=3, alpha=0.001), +# 6: ft.partial(saturation, n_index=3, alpha=0.001) +# } + +def saturation(pc, n_index): # inverse capillary pressure-saturation-relationship - return df.conditional(pc > 0, 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)), 1) + return df.conditional(pc > 0, 1/((1 + pc)**(1/(n_index + 1))), 1) + -# S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where -# we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw -def saturation_sym(pc, n_index, alpha): +def saturation_sym(pc, n_index): # inverse capillary pressure-saturation-relationship - #df.conditional(pc > 0, - return 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)) + return 1/((1 + pc)**(1/(n_index + 1))) -# derivative of S-pc relationship with respect to pc. This is needed for the -# construction of a analytic solution. -def saturation_sym_prime(pc, n_index, alpha): +def saturation_sym_prime(pc, n_index): # inverse capillary pressure-saturation-relationship - return -(alpha*(n_index - 1)*(alpha*pc)**(n_index - 1)) / ( (1 + (alpha*pc)**n_index)**((2*n_index - 1)/n_index) ) + return -1/((n_index+1)*(1 + pc)**((n_index+2)/(n_index+1))) -# note that the conditional definition of S-pc in the nonsymbolic part will be -# incorporated in the construction of the exact solution below. S_pc_sym = { - 1: ft.partial(saturation_sym, n_index=3, alpha=0.001), - 2: ft.partial(saturation_sym, n_index=3, alpha=0.001), - 3: ft.partial(saturation_sym, n_index=3, alpha=0.001), - 4: ft.partial(saturation_sym, n_index=3, alpha=0.001) + 1: ft.partial(saturation_sym, n_index=1), + 2: ft.partial(saturation_sym, n_index=1), + 3: ft.partial(saturation_sym, n_index=2), + 4: ft.partial(saturation_sym, n_index=2), + 5: ft.partial(saturation_sym, n_index=2), + 6: ft.partial(saturation_sym, n_index=2) } S_pc_sym_prime = { - 1: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), - 2: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), - 3: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), - 4: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001) + 1: ft.partial(saturation_sym_prime, n_index=1), + 2: ft.partial(saturation_sym_prime, n_index=1), + 3: ft.partial(saturation_sym_prime, n_index=2), + 4: ft.partial(saturation_sym_prime, n_index=2), + 5: ft.partial(saturation_sym_prime, n_index=2), + 6: ft.partial(saturation_sym_prime, n_index=2) } sat_pressure_relationship = { - 1: ft.partial(saturation, n_index=3, alpha=0.001), - 2: ft.partial(saturation, n_index=3, alpha=0.001), - 3: ft.partial(saturation, n_index=3, alpha=0.001), - 4: ft.partial(saturation, n_index=3, alpha=0.001) + 1: ft.partial(saturation, n_index=1), + 2: ft.partial(saturation, n_index=1), + 3: ft.partial(saturation, n_index=2), + 4: ft.partial(saturation, n_index=2), + 5: ft.partial(saturation, n_index=2), + 6: ft.partial(saturation, n_index=2) } -############################################# +############################################################################### # Manufacture source expressions with sympy # -############################################# +############################################################################### x, y = sym.symbols('x[0], x[1]') # needed by UFL t = sym.symbols('t', positive=True) -p_e_sym_2patch = { - 1: {'wetting': -7 - (1+t*t)*(1 + x*x + y*y), - 'nonwetting': -1-t*(1.1 + y + x**2)}, - 2: {'wetting': -7.0 - (1.0 + t*t)*(1.0 + x*x + y*y), - 'nonwetting': -1-t*(1.1 + y + x**2)}, -} p_e_sym = { - 1: {'wetting': p_e_sym_2patch[1]['wetting'], - 'nonwetting': p_e_sym_2patch[1]['nonwetting']}, - 2: {'wetting': p_e_sym_2patch[1]['wetting'], - 'nonwetting': p_e_sym_2patch[1]['nonwetting']}, - 3: {'wetting': p_e_sym_2patch[2]['wetting'], - 'nonwetting': p_e_sym_2patch[2]['nonwetting']}, - 4: {'wetting': p_e_sym_2patch[2]['wetting'], - 'nonwetting': p_e_sym_2patch[2]['nonwetting']} + 1: {'wetting': -6.0 - (1.0 + t*t)*(1.0 + x*x + y*y), + 'nonwetting': (-1 -t*(1.1 + y + x**2)) }, + 2: {'wetting': -6.0 - (1.0 + t*t)*(1.0 + x*x + y*y), + 'nonwetting': (-1 -t*(1.1 + y + x**2)) }, + 3: {'wetting': (-6.0 - (1.0 + t*t)*(1.0 + x*x)), + 'nonwetting': (-1 -t*(1.0 + x**2) - sym.sin(2+t**2)*y**2) }, + 4: {'wetting': (-6.0 - (1.0 + t*t)*(1.0 + x*x)), + 'nonwetting': (-1 -t*(1.0 + x**2) - sym.sin(2+t**2)*y**2) }, + 5: {'wetting': (-6.0 - (1.0 + t*t)*(1.0 + x*x)), + 'nonwetting': (-1 -t*(1.0 + x**2) - sym.sin(2+t**2)*y**2) }, + 6: {'wetting': (-6.0 - (1.0 + t*t)*(1.0 + x*x)), + 'nonwetting': (-1 -t*(1.0 + x**2) - sym.sin(2+t**2)*y**2) }, } -# p_e_sym = { -# 1: {'wetting': 1.0 - (1.0 + t*t)*(10.0 + x*x + (y-5.0)*(y-5.0)), -# 'nonwetting': - 2 - t*(1 + (y-5.0) + x**2)**2 -sym.sqrt(2+t**2)*(1 + (y-5.0)) }, -# 2: {'wetting': 1.0 - (1.0 + t*t)*(10.0 + x*x + (y-5.0)*(y-5.0)), -# 'nonwetting': - 2 - t*(1 + (y-5.0) + x**2)**2 -sym.sqrt(2+t**2)*(1 + (y-5.0))}, -# 3: {'wetting': 1.0 - (1.0 + t*t)*(10.0 + x*x + (y-5.0)*(y-5.0)) - (y-5.0)*(y-5.0)*3*sym.sin(-2*t+2*x)*sym.sin(1/2*y-1.2*t), -# 'nonwetting': - 2 - t*(1 + x**2)**2 -sym.sqrt(2+t**2)}, -# 4: {'wetting': 1.0 - (1.0 + t*t)*(10.0 + x*x + (y-5.0)*(y-5.0)) - (y-5.0)*(y-5.0)*3*sym.sin(-2*t+2*x)*sym.sin(1/2*y-1.2*t), -# 'nonwetting': - 2 - t*(1 + x**2)**2 -sym.sqrt(2+t**2)} -# } - pc_e_sym = dict() for subdomain, isR in isRichards.items(): if isR: - pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting']}) + pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting'].copy()}) else: - pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'] - - p_e_sym[subdomain]['wetting']}) + pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'].copy() + - p_e_sym[subdomain]['wetting'].copy()}) symbols = {"x": x, @@ -515,6 +904,7 @@ source_expression = exact_solution_example['source'] exact_solution = exact_solution_example['exact_solution'] initial_condition = exact_solution_example['initial_condition'] +# BOUNDARY CONDITIONS ######################################################### # Dictionary of dirichlet boundary conditions. dirichletBC = dict() # similarly to the outer boundary dictionary, if a patch has no outer boundary @@ -531,7 +921,7 @@ dirichletBC = dict() # subdomain index: {outer boudary part index: {phase: expression}} for subdomain in isRichards.keys(): - # if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None + # subdomain can have no outer boundary if outer_boundary_def_points[subdomain] is None: dirichletBC.update({subdomain: None}) else: @@ -543,6 +933,16 @@ for subdomain in isRichards.keys(): {outer_boundary_ind: exact_solution[subdomain]} ) + +# LOG FILE OUTPUT ############################################################# +# read this file and print it to std out. This way the simulation can produce a +# log file with ./TP-R-layered_soil.py | tee simulation.log +f = open(thisfile, 'r') +print(f.read()) +f.close() + + +# RUN ######################################################################### for starttime in starttimes: for mesh_resolution, solver_tol in resolutions.items(): # initialise LDD simulation class @@ -555,33 +955,35 @@ for starttime in starttimes: mesh_study=mesh_study ) - simulation.set_parameters(use_case=use_case, - output_dir=output_string, - subdomain_def_points=subdomain_def_points, - isRichards=isRichards, - interface_def_points=interface_def_points, - outer_boundary_def_points=outer_boundary_def_points, - adjacent_subdomains=adjacent_subdomains, - mesh_resolution=mesh_resolution, - viscosity=viscosity, - porosity=porosity, - L=L, - lambda_param=lambda_param, - relative_permeability=relative_permeability, - saturation=sat_pressure_relationship, - starttime=starttime, - number_of_timesteps=number_of_timesteps, - number_of_timesteps_to_analyse=number_of_timesteps_to_analyse, - plot_timestep_every=plot_timestep_every, - timestep_size=timestep_size, - sources=source_expression, - initial_conditions=initial_condition, - dirichletBC_expression_strings=dirichletBC, - exact_solution=exact_solution, - densities=densities, - include_gravity=include_gravity, - write2file=write_to_file, - ) + simulation.set_parameters( + use_case=use_case, + output_dir=output_string, + subdomain_def_points=subdomain_def_points, + isRichards=isRichards, + interface_def_points=interface_def_points, + outer_boundary_def_points=outer_boundary_def_points, + adjacent_subdomains=adjacent_subdomains, + mesh_resolution=mesh_resolution, + viscosity=viscosity, + porosity=porosity, + L=L, + lambda_param=lambda_param, + relative_permeability=relative_permeability, + saturation=sat_pressure_relationship, + starttime=starttime, + number_of_timesteps=number_of_timesteps, + number_of_timesteps_to_analyse=number_of_timesteps_to_analyse, + plot_timestep_every=plot_timestep_every, + timestep_size=timestep_size, + sources=source_expression, + initial_conditions=initial_condition, + dirichletBC_expression_strings=dirichletBC, + exact_solution=exact_solution, + densities=densities, + include_gravity=include_gravity, + gravity_acceleration=gravity_acceleration, + write2file=write_to_file, + ) simulation.initialise() output_dir = simulation.output_dir @@ -589,26 +991,39 @@ for starttime in starttimes: output = simulation.run(analyse_condition=analyse_condition) for subdomain_index, subdomain_output in output.items(): mesh_h = subdomain_output['mesh_size'] - for phase, different_errornorms in subdomain_output['errornorm'].items(): - filename = output_dir + "subdomain{}-space-time-errornorm-{}-phase.csv".format(subdomain_index, phase) - # for errortype, errornorm in different_errornorms.items(): - - # eocfile = open("eoc_filename", "a") - # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" ) - # eocfile.close() - # if subdomain.isRichards:mesh_h + for phase, error_dict in subdomain_output['errornorm'].items(): + filename = output_dir \ + + "subdomain{}".format(subdomain_index)\ + + "-space-time-errornorm-{}-phase.csv".format(phase) + # for errortype, errornorm in error_dict.items(): + + # eocfile = open("eoc_filename", "a") + # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" ) + # eocfile.close() + # if subdomain.isRichards:mesh_h data_dict = { 'mesh_parameter': mesh_resolution, 'mesh_h': mesh_h, } - for error_type, errornorms in different_errornorms.items(): + for norm_type, errornorm in error_dict.items(): data_dict.update( - {error_type: errornorms} + {norm_type: errornorm} ) errors = pd.DataFrame(data_dict, index=[mesh_resolution]) # check if file exists - if os.path.isfile(filename) == True: + if os.path.isfile(filename) is True: with open(filename, 'a') as f: - errors.to_csv(f, header=False, sep='\t', encoding='utf-8', index=False) + errors.to_csv( + f, + header=False, + sep='\t', + encoding='utf-8', + index=False + ) else: - errors.to_csv(filename, sep='\t', encoding='utf-8', index=False) + errors.to_csv( + filename, + sep='\t', + encoding='utf-8', + index=False + )