diff --git a/LDDsimulation/LDDsimulation.py b/LDDsimulation/LDDsimulation.py
index c83752a31382eb7a88d228a035a9a6f8b839d053..e15fb49679dd65380c9c14d9220d92c43c321f1f 100644
--- a/LDDsimulation/LDDsimulation.py
+++ b/LDDsimulation/LDDsimulation.py
@@ -938,12 +938,12 @@ class LDDsimulation(object):
                     file.write(exact_capillary_pressure, timestep)
                     saturation_w = df.project(S(exact_capillary_pressure), subdomain.function_space["pressure"]["wetting"])
                     # saturation_w.assign(Sat_w)
-                    saturation_w.rename("Sw", "Sw")
+                    saturation_w.rename("Sw_exact", "Sw_exact")
                     file.write(saturation_w, timestep)
                     # S_nw = 1-S(exact_capillary_pressure).vector().get_local()
                     saturation_nw = df.project(1-S(exact_capillary_pressure), subdomain.function_space["pressure"]["wetting"])
                     # saturation_nw.assign(S_nw)
-                    saturation_nw.rename("Snw", "Snw")
+                    saturation_nw.rename("Snw_exact", "Snw_exact")
                     file.write(saturation_nw, timestep)
 
 
@@ -1459,63 +1459,63 @@ class LDDsimulation(object):
                         )
 
 
-    # def post_processing(self):
-    #     """post processing of the simulation.
-    #     calculate
-    #         - pc_exact and pc_num
-    #         - absolute differences to exact solution if present.
-    #         - relative errors to exact solution if present
-    #     """
-    #     for subdom_ind, subdomain in self.subdomain.items():
-    #         self._mesh = df.Mesh()
-    #         solution_file = self.solution_file[subdom_ind]
-    #         post_solution_file = self.postprocessed_solution_file[subdom_ind]
-    #         pressure = dict()
-    #         # the internal time series counter in df.XDMFFile starts at 0 and
-    #         # refers to the first saved value. This corresponds to the initial
-    #         # values. We then calculated self.number_of_timesteps many timesteps.
-    #         t = self.starttime
-    #         for internal_timestep in range(self.number_of_timesteps+1):
-    #             for phase in subdomain.has_phases:
-    #                 pressure.update(
-    #                     {phase: df.Function(subdomain.function_space["pressure"][phase])}
-    #                 )
-    #                 phase_pressure_string = "pressure_"+"{}".format(phase)
-    #                 solution_file.read_checkpoint(
-    #                     u=pressure[phase],
-    #                     name=phase_pressure_string,
-    #                     counter=internal_timestep
-    #                     )
-    #                 pressure[phase].rename("pressure_"+"{}".format(phase), "pressure_"+"{}".format(phase))
-    #                 post_solution_file.write(pressure[phase], t)
-    #                 t += self.timestep_size
-    #                 print(f"read pressure of {phase}phase:")
-    #                 print(pressure[phase].vector()[:])
-    #         solution_file.close()
-    #         # # if we have an exact solution, write out the |u -uh|_L2 to see the
-    #         # # absolute error.
-    #         # if subdomain.pressure_exact is not None:
-    #         #     relative_L2_errornorm = dict()
-    #         #     for phase in subdomain.has_phases:
-    #         #         pa_exact = subdomain.pressure_exact[phase]
-    #         #         pa_exact.t = self.t
-    #         #         norm_pa_exact = df.norm(pa_exact, norm_type='L2', mesh=subdomain.mesh)
-    #         #         error_calculated = df.errornorm(pa_exact, subdomain.pressure[phase], 'L2', degree_rise=6)
-    #         #         if norm_pa_exact > self.tol:
-    #         #             relative_L2_errornorm.update(
-    #         #                 {phase: error_calculated/norm_pa_exact}
-    #         #                 )
-    #         #         else:
-    #         #             relative_L2_errornorm.update(
-    #         #                 {phase: error_calculated}
-    #         #                 )
-    #         #     errornorm_filename = self.output_dir+self.output_filename_parameter_part[subdom_ind]+\
-    #         #         "_L2_errornorms_over_time" +".csv"
-    #         #     self.write_errornorms_to_csv(
-    #         #         filename = errornorm_filename, #
-    #         #         subdomain_index = subdom_ind,
-    #         #         errors = relative_L2_errornorm,
-    #         #         )
+    def post_processing(self):
+        """post processing of the simulation.
+        calculate
+            - pc_exact and pc_num
+            - absolute differences to exact solution if present.
+            - relative errors to exact solution if present
+        """
+        for subdom_ind, subdomain in self.subdomain.items():
+            self._mesh = df.Mesh()
+            solution_file = self.solution_file[subdom_ind]
+            post_solution_file = self.postprocessed_solution_file[subdom_ind]
+            pressure = dict()
+            # the internal time series counter in df.XDMFFile starts at 0 and
+            # refers to the first saved value. This corresponds to the initial
+            # values. We then calculated self.number_of_timesteps many timesteps.
+            t = self.starttime
+            for internal_timestep in range(self.number_of_timesteps+1):
+                for phase in subdomain.has_phases:
+                    pressure.update(
+                        {phase: df.Function(subdomain.function_space["pressure"][phase])}
+                    )
+                    phase_pressure_string = "pressure_"+"{}".format(phase)
+                    solution_file.read_checkpoint(
+                        u=pressure[phase],
+                        name=phase_pressure_string,
+                        counter=internal_timestep
+                        )
+                    pressure[phase].rename("pressure_"+"{}".format(phase), "pressure_"+"{}".format(phase))
+                    post_solution_file.write(pressure[phase], t)
+                    t += self.timestep_size
+                    print(f"read pressure of {phase}phase:")
+                    print(pressure[phase].vector()[:])
+            solution_file.close()
+            # # if we have an exact solution, write out the |u -uh|_L2 to see the
+            # # absolute error.
+            # if subdomain.pressure_exact is not None:
+            #     relative_L2_errornorm = dict()
+            #     for phase in subdomain.has_phases:
+            #         pa_exact = subdomain.pressure_exact[phase]
+            #         pa_exact.t = self.t
+            #         norm_pa_exact = df.norm(pa_exact, norm_type='L2', mesh=subdomain.mesh)
+            #         error_calculated = df.errornorm(pa_exact, subdomain.pressure[phase], 'L2', degree_rise=6)
+            #         if norm_pa_exact > self.tol:
+            #             relative_L2_errornorm.update(
+            #                 {phase: error_calculated/norm_pa_exact}
+            #                 )
+            #         else:
+            #             relative_L2_errornorm.update(
+            #                 {phase: error_calculated}
+            #                 )
+            #     errornorm_filename = self.output_dir+self.output_filename_parameter_part[subdom_ind]+\
+            #         "_L2_errornorms_over_time" +".csv"
+            #     self.write_errornorms_to_csv(
+            #         filename = errornorm_filename, #
+            #         subdomain_index = subdom_ind,
+            #         errors = relative_L2_errornorm,
+            #         )
 
 
     def _init_exact_solution_expression(self):