From 25e3aa7287de2400ce8ebbc8160153c70e8757a1 Mon Sep 17 00:00:00 2001 From: David Seus <david.seus@ians.uni-stuttgart.de> Date: Thu, 19 Sep 2019 14:47:17 +0200 Subject: [PATCH] test different mesh study usecases --- LDDsimulation/LDDsimulation.py | 57 +- .../R-one-patch-mesh-study-alternative.py | 491 ++++++++++++++++++ .../mesh_study/R-one-patch-mesh-study.py | 491 ++++++++++++++++++ .../R-one-patch-mesh-study-fixed-timestep.py | 491 ++++++++++++++++++ ...h-mesh-study-fixed-timestep-nonwetting0.py | 5 +- ...atch-mesh-study-fixed-timestep-wetting0.py | 2 +- .../TP-one-patch-mesh-study-fixed-timestep.py | 28 +- 7 files changed, 1544 insertions(+), 21 deletions(-) create mode 100755 TP-one-patch/mesh_study/R-one-patch-mesh-study-alternative.py create mode 100755 TP-one-patch/mesh_study/R-one-patch-mesh-study.py create mode 100755 TP-one-patch/mesh_study_for_fixed_timestep/R-one-patch-mesh-study-fixed-timestep.py diff --git a/LDDsimulation/LDDsimulation.py b/LDDsimulation/LDDsimulation.py index 6da7a40..6208b6c 100644 --- a/LDDsimulation/LDDsimulation.py +++ b/LDDsimulation/LDDsimulation.py @@ -56,7 +56,7 @@ class LDDsimulation(object): # df.parameters["refinement_algorithm"] = "plaza_with_parent_facets" df.parameters["form_compiler"]["quadrature_degree"] = 12 # interpolation degree, for source terms, intitial and boundary conditions. - self.interpolation_degree = 8 + self.interpolation_degree = 4 # # To be able to run DG in parallel # df.parameters["ghost_mode"] = "shared_facet" # df.parameters["ghost_mode"] = "none" @@ -411,6 +411,12 @@ class LDDsimulation(object): # df.info(colored("start post processing calculations ...\n", "yellow")) # self.post_processing() # df.info(colored("finished post processing calculations \nAll right. I'm Done.", "green")) + for subdomain_index, subdomain_output in self.output.items(): + print(f"Errornorms on subdomain{subdomain_index}") + for phase, different_errornorms in subdomain_output['errornorm'].items(): + print(f"phase: {phase}") + for errortype, error in different_errornorms.items(): + print(f"{errortype}: {error}\n") return self.output @@ -710,14 +716,34 @@ class LDDsimulation(object): # if we have an exact solution, write out several errors and # errornorms to be used later in paraview or latex plots. if subdomain.pressure_exact is not None: + pressure_exact = dict() for phase in subdomain.has_phases: pa_exact = subdomain.pressure_exact[phase] pa_exact.t = self.t - error_calculated = df.errornorm(pa_exact, subdomain.pressure[phase], 'L2', degree_rise=6) + error_calculated = df.errornorm(pa_exact, subdomain.pressure[phase], 'L2', degree_rise=2) + pressure_exact.update( + {phase: df.interpolate(pa_exact, subdomain.function_space["pressure"][phase])} + ) + absolute_difference = df.Function(subdomain.function_space["pressure"][phase]) + pressure_difference = pressure_exact[phase].vector()[:] - subdomain.pressure[phase].vector()[:] + abs_diff_tmp = np.fabs(pressure_difference) + absolute_difference.vector()[:] = abs_diff_tmp + dx = subdomain.dx + error_calculated_L1 = df.assemble(absolute_difference*dx) + error_calculated_L2 = np.sqrt(df.assemble(absolute_difference**2*dx)) + error_calculated_L2_2 = df.norm(absolute_difference, norm_type='L2', mesh=subdomain.mesh) + print(f"Errornorm dolfin: {error_calculated}") + print(f"Errornorm manually calculated L1: {error_calculated_L1}") + print(f"Errornorm manually calculated L2: {error_calculated_L2}") + print(f"Errornorm manually calculated L2 with df.norm: {error_calculated_L2_2}") self.output[subdom_ind]['errornorm'][phase]['L1'] += self.timestep_size*error_calculated self.output[subdom_ind]['errornorm'][phase]['L2'] += self.timestep_size*error_calculated**2 + print(f"Linf error on subdomain {subdom_ind} and phase {phase} before checking: {self.output[subdom_ind]['errornorm'][phase]['Linf']}") if error_calculated > self.output[subdom_ind]['errornorm'][phase]['Linf']: - self.output[subdom_ind]['errornorm'][phase]['Linf'] = error_calculated + self.output[subdom_ind]['errornorm'][phase].update( + {'Linf': error_calculated} + ) + print(f"Linf error on subdomain {subdom_ind} and phase {phase} after checking: {self.output[subdom_ind]['errornorm'][phase]['Linf']}") # if we are at a timestep at which to write shit out, # calculate the relative errornorm @@ -868,20 +894,33 @@ class LDDsimulation(object): """ evaluate the exact solution of the simulation (in case there is one) at all timesteps and write it to the solution file. + In addition write calculate and write out the saturation as well as the + source terms in order to montior the examples """ # print(f" solution will be printed at times t = {self.timesteps_to_plot}\n") for subdom_ind, subdomain in self.subdomain.items(): file = self.solution_file[subdom_ind] for timestep in self.timesteps_to_plot: exact_pressure = dict() + S = self.saturation[subdom_ind] + saturation_w = df.Function(subdomain.function_space["pressure"]['wetting']) + saturation_nw = df.Function(subdomain.function_space["pressure"]['wetting']) + source = dict() for phase in subdomain.has_phases: + f_expr = subdomain.source[phase] pa_exact = subdomain.pressure_exact[phase] pa_exact.t = timestep + f_expr.t = timestep exact_pressure.update( - {phase: df.interpolate(pa_exact, subdomain.function_space["pressure"][phase])} + {phase: df.project(pa_exact, subdomain.function_space["pressure"][phase])} ) + source.update( + {phase: df.project(f_expr, subdomain.function_space["pressure"][phase])} + ) exact_pressure[phase].rename("exact_pressure_"+"{}".format(phase), "exact_pressure_"+"{}".format(phase)) file.write(exact_pressure[phase], timestep) + source[phase].rename("source_"+"{}".format(phase), "source_"+"{}".format(phase)) + file.write(source[phase], timestep) exact_capillary_pressure = df.Function(subdomain.function_space["pressure"]['wetting']) if subdomain.isRichards: @@ -891,6 +930,15 @@ class LDDsimulation(object): exact_capillary_pressure.vector().set_local(pc_temp) exact_capillary_pressure.rename("pc_exact", "pc_exact") file.write(exact_capillary_pressure, timestep) + saturation_w = df.project(S(exact_capillary_pressure), subdomain.function_space["pressure"]["wetting"]) + # saturation_w.assign(Sat_w) + saturation_w.rename("Sw", "Sw") + file.write(saturation_w, timestep) + # S_nw = 1-S(exact_capillary_pressure).vector().get_local() + saturation_nw = df.project(1-S(exact_capillary_pressure), subdomain.function_space["pressure"]["wetting"]) + # saturation_nw.assign(S_nw) + saturation_nw.rename("Snw", "Snw") + file.write(saturation_nw, timestep) def write_subsequent_errors_to_csv(self,# @@ -1390,6 +1438,7 @@ class LDDsimulation(object): # in case time == self.starttime, the expression has already been # assembled by self._init_DirichletBC_dictionary. if np.fabs(time - self.starttime) < self.tol: + print("warning: update_DirichletBC_dictionary tried to update initial time") pass else: V = subdomain.function_space["pressure"] diff --git a/TP-one-patch/mesh_study/R-one-patch-mesh-study-alternative.py b/TP-one-patch/mesh_study/R-one-patch-mesh-study-alternative.py new file mode 100755 index 0000000..8255953 --- /dev/null +++ b/TP-one-patch/mesh_study/R-one-patch-mesh-study-alternative.py @@ -0,0 +1,491 @@ +#!/usr/bin/python3 +import dolfin as df +import mshr +import numpy as np +import sympy as sym +import typing as tp +import domainPatch as dp +import LDDsimulation as ldd +import functools as ft +import helpers as hlp +import datetime +import os +import pandas as pd + +date = datetime.datetime.now() +datestr = date.strftime("%Y-%m-%d") +#import ufl as ufl + +# init sympy session +sym.init_printing() + +use_case = "R-one-patch-mesh-study" +# solver_tol = 5E-9 +max_iter_num = 1000 +FEM_Lagrange_degree = 1 +mesh_study = True +# resolutions = {128: 1e-7} #[1,2,3,4,5,10,20,40,75,100] +resolutions = { + # 1: 1e-7, + # 2: 1e-7, + # 4: 1e-7, + # 8: 1e-7, + # 16: 1e-7, + 32: 1e-7, + # 64: 1e-7, + # 128: 1e-7, + # 256: 1e-7, + # 512: 1e-7, + } + +############ GRID ####################### +# mesh_resolution = 20 +timestep_size = 0.001 +number_of_timesteps = 10 +plot_timestep_every = 1 +# decide how many timesteps you want analysed. Analysed means, that we write out +# subsequent errors of the L-iteration within the timestep. +number_of_timesteps_to_analyse = 5 +starttimes = [0.5] +# starttimes = [0.0, 0.05] + +# starttimes = { +# 1: 0.0 +# 2: 0.05 +# 4: 0.1 +# 8: 0.2 +# 16: 0.4 +# 32: 0.7 +# 64: 1.0 +# 128: 1.3 +# } + +Lw = 0.5 #/timestep_size +Lnw=Lw + +lambda_w = 0 +lambda_nw = 0 + +include_gravity = False +debugflag = False +analyse_condition = True + +if mesh_study: + output_string = "./output/{}-{}_timesteps{}_P{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree) +else: + for tol in resolutions.values(): + solver_tol = tol + output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol) + +# toggle what should be written to files +if mesh_study: + write_to_file = { + 'space_errornorms': True, + 'meshes_and_markers': True, + 'L_iterations_per_timestep': True, + 'solutions': True, + 'absolute_differences': True, + 'condition_numbers': analyse_condition, + 'subsequent_errors': True + } +else: + write_to_file = { + 'space_errornorms': True, + 'meshes_and_markers': True, + 'L_iterations_per_timestep': False, + 'solutions': True, + 'absolute_differences': True, + 'condition_numbers': analyse_condition, + 'subsequent_errors': True + } + +##### Domain and Interface #### +# global simulation domain domain +sub_domain0_vertices = [df.Point(-1.0, -1.0), # + df.Point(1.0, -1.0), # + df.Point(1.0, 1.0), # + df.Point(-1.0, 1.0)] + +subdomain0_outer_boundary_verts = { + 0: [sub_domain0_vertices[0], + sub_domain0_vertices[1], + sub_domain0_vertices[2], + sub_domain0_vertices[3], + sub_domain0_vertices[0]] +} + +# list of subdomains given by the boundary polygon vertices. +# Subdomains are given as a list of dolfin points forming +# a closed polygon, such that mshr.Polygon(subdomain_def_points[i]) can be used +# to create the subdomain. subdomain_def_points[0] contains the +# vertices of the global simulation domain and subdomain_def_points[i] contains the +# vertices of the subdomain i. +subdomain_def_points = [sub_domain0_vertices] +# in the below list, index 0 corresponds to the 12 interface which has index 1 +interface_def_points = None + +# if a subdomain has no outer boundary write None instead, i.e. +# i: None +# if i is the index of the inner subdomain. +outer_boundary_def_points = { + # subdomain number + 0 : subdomain0_outer_boundary_verts +} + +# adjacent_subdomains[i] contains the indices of the subdomains sharing the +# interface i (i.e. given by interface_def_points[i]). +adjacent_subdomains = None +isRichards = { + 0: True, # + } + +viscosity = {# +# subdom_num : viscosity + 0 : {'wetting' :1, + 'nonwetting': 1}, # +} + +porosity = {# +# subdom_num : porosity + 0: 1,# +} + +# Dict of the form: { subdom_num : density } +densities = { + 0: {'wetting': 1, #997, + 'nonwetting': 1}, #1225} +} + +gravity_acceleration = 9.81 + +L = {# +# subdom_num : subdomain L for L-scheme + 0: {'wetting' :Lw, + 'nonwetting': Lnw},# +} + +lambda_param = {# +# subdom_num : lambda parameter for the L-scheme + 0: {'wetting' :lambda_w, + 'nonwetting': lambda_nw},# +} + +## relative permeabilty functions on subdomain 1 +def rel_perm1w(s): + # relative permeabilty wetting on subdomain1 + return s**2 + +def rel_perm1nw(s): + # relative permeabilty nonwetting on subdomain1 + return (1-s)**2 + +_rel_perm1w = ft.partial(rel_perm1w) +_rel_perm1nw = ft.partial(rel_perm1nw) + +subdomain1_rel_perm = { + 'wetting': _rel_perm1w,# + 'nonwetting': _rel_perm1nw +} + +## dictionary of relative permeabilties on all domains. +relative_permeability = {# + 0: subdomain1_rel_perm, +} + +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 1 +def rel_perm1w_prime(s): + # relative permeabilty on subdomain1 + return 2*s + +def rel_perm1nw_prime(s): + # relative permeabilty on subdomain1 + return -2*(1-s) + +_rel_perm1w_prime = ft.partial(rel_perm1w_prime) +_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime) + +subdomain1_rel_perm_prime = { + 'wetting': _rel_perm1w_prime, + 'nonwetting': _rel_perm1nw_prime +} + +# dictionary of relative permeabilties on all domains. +ka_prime = { + 0: subdomain1_rel_perm_prime, +} + + + +def saturation(pc, index): + # inverse capillary pressure-saturation-relationship + return df.conditional(pc > 0, 1/((1 + pc)**(1/(index + 1))), 1) + +def saturation_sym(pc, index): + # inverse capillary pressure-saturation-relationship + return 1/((1 + pc)**(1/(index + 1))) + + +# derivative of S-pc relationship with respect to pc. This is needed for the +# construction of a analytic solution. +def saturation_sym_prime(pc, index): + # inverse capillary pressure-saturation-relationship + return -1/((index+1)*(1 + pc)**((index+2)/(index+1))) + + +# def saturation(pc, index): +# # inverse capillary pressure-saturation-relationship +# return df.conditional(pc > 0, -index*pc, 1) +# +# +# def saturation_sym(pc, index): +# # inverse capillary pressure-saturation-relationship +# return -index*pc +# +# +# # derivative of S-pc relationship with respect to pc. This is needed for the +# # construction of a analytic solution. +# def saturation_sym_prime(pc, index): +# # inverse capillary pressure-saturation-relationship +# return -index + + +# note that the conditional definition of S-pc in the nonsymbolic part will be +# incorporated in the construction of the exact solution below. +S_pc_sym = { + 0: ft.partial(saturation_sym, index=1), +} + +S_pc_sym_prime = { + 0: ft.partial(saturation_sym_prime, index=1), +} + +sat_pressure_relationship = { + 0: ft.partial(saturation, index=1), +} + + +############################################# +# Manufacture source expressions with sympy # +############################################# +x, y = sym.symbols('x[0], x[1]') # needed by UFL +t = sym.symbols('t', positive=True) + +epsilon_x_inner = 0.7 +epsilon_x_outer = 0.99 +epsilon_y_inner = epsilon_x_inner +epsilon_y_outer = epsilon_x_outer + +def mollifier(x, epsilon): + """ one d mollifier """ + out_expr = sym.exp(-1/(1-(x/epsilon)**2) + 1) + return out_expr + +mollifier_handle = ft.partial(mollifier, epsilon=epsilon_x_inner) + +pw_sym_x = sym.Piecewise( + (mollifier_handle(x), x**2 < epsilon_x_outer**2), + (0, True) +) +pw_sym_y = sym.Piecewise( + (mollifier_handle(y), y**2 < epsilon_y_outer**2), + (0, True) +) + +def mollifier2d(x, y, epsilon): + """ one d mollifier """ + out_expr = sym.exp(-1/(1-(x**2 + y**2)/epsilon**2) + 1) + return out_expr + +mollifier2d_handle = ft.partial(mollifier2d, epsilon=epsilon_x_outer) + +pw_sym2d_x = sym.Piecewise( + (mollifier2d_handle(x, y), x**2 + y**2 < epsilon_x_outer**2), + (0, True) +) + +zero_on_epsilon_shrinking_of_subdomain = sym.Piecewise( + (mollifier_handle(sym.sqrt(x**2 + y**2)+2*epsilon_x_inner), ((-2*epsilon_x_inner<sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<-epsilon_x_inner))), + (0, ((-epsilon_x_inner<=sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<=epsilon_x_inner))), + (mollifier_handle(sym.sqrt(x**2 + y**2)-2*epsilon_x_inner), ((epsilon_x_inner<sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<2*epsilon_x_inner))), + (1, True), +) + +zero_on_epsilon_shrinking_of_subdomain_x = sym.Piecewise( + (mollifier_handle(x+2*epsilon_x_inner), ((-2*epsilon_x_inner<x) & (x<-epsilon_x_inner))), + (0, ((-epsilon_x_inner<=x) & (x<=epsilon_x_inner))), + (mollifier_handle(x-2*epsilon_x_inner), ((epsilon_x_inner<x) & (x<2*epsilon_x_inner))), + (1, True), +) + +zero_on_epsilon_shrinking_of_subdomain_y = sym.Piecewise( + (1, y<=-2*epsilon_x_inner), + (mollifier_handle(y+2*epsilon_x_inner), ((-2*epsilon_x_inner<y) & (y<-epsilon_x_inner))), + (0, ((-epsilon_x_inner<=y) & (y<=epsilon_x_inner))), + (mollifier_handle(y-2*epsilon_x_inner), ((epsilon_x_inner<y) & (y<2*epsilon_x_inner))), + (1, True), +) + +zero_on_shrinking = zero_on_epsilon_shrinking_of_subdomain #zero_on_epsilon_shrinking_of_subdomain_x + zero_on_epsilon_shrinking_of_subdomain_y +gaussian = pw_sym2d_x# pw_sym_y*pw_sym_x +cutoff = gaussian/(gaussian + zero_on_shrinking) + +# # construction of differentiable characteristic function. +# def smooth_characteristic_func_on_epsilon_shrinking_of_subdomain0(x, y, epsilon_x_inner, epsilon_y_inner, epsilon_x_outer, epsilon_y_outer): +# dist_to_complement_x = ft.partial(mollifier, epsilon=epsilon_x_inner) +# dist_to_complement_y = ft.partial(mollifier, epsilon=epsilon_y_inner) +# dist_to_complement = dist_to_complement_y(y)*dist_to_complement_x(x) +# dist_to_eps_shrinking_x = ft.partial(zero_outside_epsilon_thickening_of_subdomain, epsilon=epsilon_x_outer) +# dist_to_eps_shrinking_y = ft.partial(zero_outside_epsilon_thickening_of_subdomain, epsilon=epsilon_y_outer) +# dist_to_eps_shrinking = dist_to_eps_shrinking_y(y)*dist_to_eps_shrinking_x(x) +# return dist_to_complement/(dist_to_eps_shrinking + dist_to_complement) +# + +# def dist_to_epsilon_thickening_of_subdomain0_complement(x, y, epsilon): +# """ calculates the (euklidian distance)^2 of a point x,y to the epsilon +# thickening of the complement of the domain. +# """ +# is_inside = ((1-sym.Abs(x) > epsilon) & (1-sym.Abs(y) > epsilon)) +# sym.Piecewise((0, is_inside)) + +p_e_sym = { + 0: {'wetting': (-7 -1*t*(1 + x + y)), #*cutoff, + 'nonwetting': (-1 -1*t*(1.1+y + x))}, #*cutoff}, +} + +pc_e_sym = dict() +for subdomain, isR in isRichards.items(): + if isR: + pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting']}) + else: + pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'] + - p_e_sym[subdomain]['wetting']}) + + +symbols = {"x": x, + "y": y, + "t": t} +# turn above symbolic code into exact solution for dolphin and +# construct the rhs that matches the above exact solution. +exact_solution_example = hlp.generate_exact_solution_expressions( + symbols=symbols, + isRichards=isRichards, + symbolic_pressure=p_e_sym, + symbolic_capillary_pressure=pc_e_sym, + saturation_pressure_relationship=S_pc_sym, + saturation_pressure_relationship_prime=S_pc_sym_prime, + viscosity=viscosity, + porosity=porosity, + relative_permeability=relative_permeability, + relative_permeability_prime=ka_prime, + densities=densities, + gravity_acceleration=gravity_acceleration, + include_gravity=include_gravity, + ) +source_expression = exact_solution_example['source'] +exact_solution = exact_solution_example['exact_solution'] +initial_condition = exact_solution_example['initial_condition'] + +# Dictionary of dirichlet boundary conditions. +dirichletBC = dict() +# similarly to the outer boundary dictionary, if a patch has no outer boundary +# None should be written instead of an expression. +# This is a bit of a brainfuck: +# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind. +# Since a domain patch can have several disjoint outer boundary parts, the +# expressions need to get an enumaration index which starts at 0. +# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of +# subdomain ind and boundary part j. +# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting'] +# return the actual expression needed for the dirichlet condition for both +# phases if present. + +# subdomain index: {outer boudary part index: {phase: expression}} +for subdomain in isRichards.keys(): + # if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None + if outer_boundary_def_points[subdomain] is None: + dirichletBC.update({subdomain: None}) + else: + dirichletBC.update({subdomain: dict()}) + # set the dirichlet conditions to be the same code as exact solution on + # the subdomain. + for outer_boundary_ind in outer_boundary_def_points[subdomain].keys(): + dirichletBC[subdomain].update( + {outer_boundary_ind: exact_solution[subdomain]} + ) + + +# def saturation(pressure, subdomain_index): +# # inverse capillary pressure-saturation-relationship +# return df.conditional(pressure < 0, 1/((1 - pressure)**(1/(subdomain_index + 1))), 1) +# +# sa +for starttime in starttimes: + for mesh_resolution, solver_tol in resolutions.items(): + # initialise LDD simulation class + simulation = ldd.LDDsimulation( + tol=1E-14, + LDDsolver_tol=solver_tol, + debug=debugflag, + max_iter_num=max_iter_num, + FEM_Lagrange_degree=FEM_Lagrange_degree, + mesh_study=mesh_study + ) + + simulation.set_parameters(use_case=use_case, + output_dir=output_string, + subdomain_def_points=subdomain_def_points, + isRichards=isRichards, + interface_def_points=interface_def_points, + outer_boundary_def_points=outer_boundary_def_points, + adjacent_subdomains=adjacent_subdomains, + mesh_resolution=mesh_resolution, + viscosity=viscosity, + porosity=porosity, + L=L, + lambda_param=lambda_param, + relative_permeability=relative_permeability, + saturation=sat_pressure_relationship, + starttime=starttime, + number_of_timesteps=number_of_timesteps, + number_of_timesteps_to_analyse=number_of_timesteps_to_analyse, + plot_timestep_every=plot_timestep_every, + timestep_size=timestep_size, + sources=source_expression, + initial_conditions=initial_condition, + dirichletBC_expression_strings=dirichletBC, + exact_solution=exact_solution, + densities=densities, + include_gravity=include_gravity, + write2file=write_to_file, + ) + + simulation.initialise() + output_dir = simulation.output_dir + # simulation.write_exact_solution_to_xdmf() + output = simulation.run(analyse_condition=analyse_condition) + for subdomain_index, subdomain_output in output.items(): + mesh_h = subdomain_output['mesh_size'] + for phase, different_errornorms in subdomain_output['errornorm'].items(): + filename = output_dir + "subdomain{}-space-time-errornorm-{}-phase.csv".format(subdomain_index, phase) + # for errortype, errornorm in different_errornorms.items(): + + # eocfile = open("eoc_filename", "a") + # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" ) + # eocfile.close() + # if subdomain.isRichards:mesh_h + data_dict = { + 'mesh_parameter': mesh_resolution, + 'mesh_h': mesh_h, + } + for error_type, errornorms in different_errornorms.items(): + data_dict.update( + {error_type: errornorms} + ) + errors = pd.DataFrame(data_dict, index=[mesh_resolution]) + # check if file exists + if os.path.isfile(filename) == True: + with open(filename, 'a') as f: + errors.to_csv(f, header=False, sep='\t', encoding='utf-8', index=False) + else: + errors.to_csv(filename, sep='\t', encoding='utf-8', index=False) diff --git a/TP-one-patch/mesh_study/R-one-patch-mesh-study.py b/TP-one-patch/mesh_study/R-one-patch-mesh-study.py new file mode 100755 index 0000000..fac5fc9 --- /dev/null +++ b/TP-one-patch/mesh_study/R-one-patch-mesh-study.py @@ -0,0 +1,491 @@ +#!/usr/bin/python3 +import dolfin as df +import mshr +import numpy as np +import sympy as sym +import typing as tp +import domainPatch as dp +import LDDsimulation as ldd +import functools as ft +import helpers as hlp +import datetime +import os +import pandas as pd + +date = datetime.datetime.now() +datestr = date.strftime("%Y-%m-%d") +#import ufl as ufl + +# init sympy session +sym.init_printing() + +use_case = "R-one-patch-mesh-study" +# solver_tol = 5E-9 +max_iter_num = 1000 +FEM_Lagrange_degree = 1 +mesh_study = True +# resolutions = {128: 1e-7} #[1,2,3,4,5,10,20,40,75,100] +resolutions = { + # 1: 1e-7, + # 2: 1e-7, + # 4: 1e-7, + # 8: 1e-7, + # 16: 1e-7, + 32: 1e-7, + # 64: 1e-7, + # 128: 1e-7, + # 256: 1e-7, + # 512: 1e-7, + } + +############ GRID ####################### +# mesh_resolution = 20 +timestep_size = 0.00001 +number_of_timesteps = 10 +plot_timestep_every = 1 +# decide how many timesteps you want analysed. Analysed means, that we write out +# subsequent errors of the L-iteration within the timestep. +number_of_timesteps_to_analyse = 5 +starttimes = [0.5] +# starttimes = [0.0, 0.05] + +# starttimes = { +# 1: 0.0 +# 2: 0.05 +# 4: 0.1 +# 8: 0.2 +# 16: 0.4 +# 32: 0.7 +# 64: 1.0 +# 128: 1.3 +# } + +Lw = 0.025 #/timestep_size +Lnw=Lw + +lambda_w = 0 +lambda_nw = 0 + +include_gravity = False +debugflag = False +analyse_condition = True + +if mesh_study: + output_string = "./output/{}-{}_timesteps{}_P{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree) +else: + for tol in resolutions.values(): + solver_tol = tol + output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol) + +# toggle what should be written to files +if mesh_study: + write_to_file = { + 'space_errornorms': True, + 'meshes_and_markers': True, + 'L_iterations_per_timestep': True, + 'solutions': True, + 'absolute_differences': True, + 'condition_numbers': analyse_condition, + 'subsequent_errors': True + } +else: + write_to_file = { + 'space_errornorms': True, + 'meshes_and_markers': True, + 'L_iterations_per_timestep': False, + 'solutions': True, + 'absolute_differences': True, + 'condition_numbers': analyse_condition, + 'subsequent_errors': True + } + +##### Domain and Interface #### +# global simulation domain domain +sub_domain0_vertices = [df.Point(-1.0, -1.0), # + df.Point(1.0, -1.0), # + df.Point(1.0, 1.0), # + df.Point(-1.0, 1.0)] + +subdomain0_outer_boundary_verts = { + 0: [sub_domain0_vertices[0], + sub_domain0_vertices[1], + sub_domain0_vertices[2], + sub_domain0_vertices[3], + sub_domain0_vertices[0]] +} + +# list of subdomains given by the boundary polygon vertices. +# Subdomains are given as a list of dolfin points forming +# a closed polygon, such that mshr.Polygon(subdomain_def_points[i]) can be used +# to create the subdomain. subdomain_def_points[0] contains the +# vertices of the global simulation domain and subdomain_def_points[i] contains the +# vertices of the subdomain i. +subdomain_def_points = [sub_domain0_vertices] +# in the below list, index 0 corresponds to the 12 interface which has index 1 +interface_def_points = None + +# if a subdomain has no outer boundary write None instead, i.e. +# i: None +# if i is the index of the inner subdomain. +outer_boundary_def_points = { + # subdomain number + 0 : subdomain0_outer_boundary_verts +} + +# adjacent_subdomains[i] contains the indices of the subdomains sharing the +# interface i (i.e. given by interface_def_points[i]). +adjacent_subdomains = None +isRichards = { + 0: True, # + } + +viscosity = {# +# subdom_num : viscosity + 0 : {'wetting' :1, + 'nonwetting': 1}, # +} + +porosity = {# +# subdom_num : porosity + 0: 1,# +} + +# Dict of the form: { subdom_num : density } +densities = { + 0: {'wetting': 1, #997, + 'nonwetting': 1}, #1225} +} + +gravity_acceleration = 9.81 + +L = {# +# subdom_num : subdomain L for L-scheme + 0: {'wetting' :Lw, + 'nonwetting': Lnw},# +} + +lambda_param = {# +# subdom_num : lambda parameter for the L-scheme + 0: {'wetting' :lambda_w, + 'nonwetting': lambda_nw},# +} + +## relative permeabilty functions on subdomain 1 +def rel_perm1w(s): + # relative permeabilty wetting on subdomain1 + return s**2 + +def rel_perm1nw(s): + # relative permeabilty nonwetting on subdomain1 + return (1-s)**2 + +_rel_perm1w = ft.partial(rel_perm1w) +_rel_perm1nw = ft.partial(rel_perm1nw) + +subdomain1_rel_perm = { + 'wetting': _rel_perm1w,# + 'nonwetting': _rel_perm1nw +} + +## dictionary of relative permeabilties on all domains. +relative_permeability = {# + 0: subdomain1_rel_perm, +} + +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 1 +def rel_perm1w_prime(s): + # relative permeabilty on subdomain1 + return 2*s + +def rel_perm1nw_prime(s): + # relative permeabilty on subdomain1 + return -2*(1-s) + +_rel_perm1w_prime = ft.partial(rel_perm1w_prime) +_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime) + +subdomain1_rel_perm_prime = { + 'wetting': _rel_perm1w_prime, + 'nonwetting': _rel_perm1nw_prime +} + +# dictionary of relative permeabilties on all domains. +ka_prime = { + 0: subdomain1_rel_perm_prime, +} + + + +def saturation(pc, index): + # inverse capillary pressure-saturation-relationship + return df.conditional(pc > 0, 1/((1 + pc)**(1/(index + 1))), 1) + +def saturation_sym(pc, index): + # inverse capillary pressure-saturation-relationship + return 1/((1 + pc)**(1/(index + 1))) + + +# derivative of S-pc relationship with respect to pc. This is needed for the +# construction of a analytic solution. +def saturation_sym_prime(pc, index): + # inverse capillary pressure-saturation-relationship + return -1/((index+1)*(1 + pc)**((index+2)/(index+1))) + + +# def saturation(pc, index): +# # inverse capillary pressure-saturation-relationship +# return df.conditional(pc > 0, -index*pc, 1) +# +# +# def saturation_sym(pc, index): +# # inverse capillary pressure-saturation-relationship +# return -index*pc +# +# +# # derivative of S-pc relationship with respect to pc. This is needed for the +# # construction of a analytic solution. +# def saturation_sym_prime(pc, index): +# # inverse capillary pressure-saturation-relationship +# return -index + + +# note that the conditional definition of S-pc in the nonsymbolic part will be +# incorporated in the construction of the exact solution below. +S_pc_sym = { + 0: ft.partial(saturation_sym, index=1), +} + +S_pc_sym_prime = { + 0: ft.partial(saturation_sym_prime, index=1), +} + +sat_pressure_relationship = { + 0: ft.partial(saturation, index=1), +} + + +############################################# +# Manufacture source expressions with sympy # +############################################# +x, y = sym.symbols('x[0], x[1]') # needed by UFL +t = sym.symbols('t', positive=True) + +epsilon_x_inner = 0.7 +epsilon_x_outer = 0.99 +epsilon_y_inner = epsilon_x_inner +epsilon_y_outer = epsilon_x_outer + +def mollifier(x, epsilon): + """ one d mollifier """ + out_expr = sym.exp(-1/(1-(x/epsilon)**2) + 1) + return out_expr + +mollifier_handle = ft.partial(mollifier, epsilon=epsilon_x_inner) + +pw_sym_x = sym.Piecewise( + (mollifier_handle(x), x**2 < epsilon_x_outer**2), + (0, True) +) +pw_sym_y = sym.Piecewise( + (mollifier_handle(y), y**2 < epsilon_y_outer**2), + (0, True) +) + +def mollifier2d(x, y, epsilon): + """ one d mollifier """ + out_expr = sym.exp(-1/(1-(x**2 + y**2)/epsilon**2) + 1) + return out_expr + +mollifier2d_handle = ft.partial(mollifier2d, epsilon=epsilon_x_outer) + +pw_sym2d_x = sym.Piecewise( + (mollifier2d_handle(x, y), x**2 + y**2 < epsilon_x_outer**2), + (0, True) +) + +zero_on_epsilon_shrinking_of_subdomain = sym.Piecewise( + (mollifier_handle(sym.sqrt(x**2 + y**2)+2*epsilon_x_inner), ((-2*epsilon_x_inner<sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<-epsilon_x_inner))), + (0, ((-epsilon_x_inner<=sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<=epsilon_x_inner))), + (mollifier_handle(sym.sqrt(x**2 + y**2)-2*epsilon_x_inner), ((epsilon_x_inner<sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<2*epsilon_x_inner))), + (1, True), +) + +zero_on_epsilon_shrinking_of_subdomain_x = sym.Piecewise( + (mollifier_handle(x+2*epsilon_x_inner), ((-2*epsilon_x_inner<x) & (x<-epsilon_x_inner))), + (0, ((-epsilon_x_inner<=x) & (x<=epsilon_x_inner))), + (mollifier_handle(x-2*epsilon_x_inner), ((epsilon_x_inner<x) & (x<2*epsilon_x_inner))), + (1, True), +) + +zero_on_epsilon_shrinking_of_subdomain_y = sym.Piecewise( + (1, y<=-2*epsilon_x_inner), + (mollifier_handle(y+2*epsilon_x_inner), ((-2*epsilon_x_inner<y) & (y<-epsilon_x_inner))), + (0, ((-epsilon_x_inner<=y) & (y<=epsilon_x_inner))), + (mollifier_handle(y-2*epsilon_x_inner), ((epsilon_x_inner<y) & (y<2*epsilon_x_inner))), + (1, True), +) + +zero_on_shrinking = zero_on_epsilon_shrinking_of_subdomain #zero_on_epsilon_shrinking_of_subdomain_x + zero_on_epsilon_shrinking_of_subdomain_y +gaussian = pw_sym2d_x# pw_sym_y*pw_sym_x +cutoff = gaussian/(gaussian + zero_on_shrinking) + +# # construction of differentiable characteristic function. +# def smooth_characteristic_func_on_epsilon_shrinking_of_subdomain0(x, y, epsilon_x_inner, epsilon_y_inner, epsilon_x_outer, epsilon_y_outer): +# dist_to_complement_x = ft.partial(mollifier, epsilon=epsilon_x_inner) +# dist_to_complement_y = ft.partial(mollifier, epsilon=epsilon_y_inner) +# dist_to_complement = dist_to_complement_y(y)*dist_to_complement_x(x) +# dist_to_eps_shrinking_x = ft.partial(zero_outside_epsilon_thickening_of_subdomain, epsilon=epsilon_x_outer) +# dist_to_eps_shrinking_y = ft.partial(zero_outside_epsilon_thickening_of_subdomain, epsilon=epsilon_y_outer) +# dist_to_eps_shrinking = dist_to_eps_shrinking_y(y)*dist_to_eps_shrinking_x(x) +# return dist_to_complement/(dist_to_eps_shrinking + dist_to_complement) +# + +# def dist_to_epsilon_thickening_of_subdomain0_complement(x, y, epsilon): +# """ calculates the (euklidian distance)^2 of a point x,y to the epsilon +# thickening of the complement of the domain. +# """ +# is_inside = ((1-sym.Abs(x) > epsilon) & (1-sym.Abs(y) > epsilon)) +# sym.Piecewise((0, is_inside)) + +p_e_sym = { + 0: {'wetting': (-7 - (1+t*t)*(1 + x*x + y*y)), #*cutoff, + 'nonwetting': (-1 -t*(1.1+y + x**2))}, #*cutoff}, +} + +pc_e_sym = dict() +for subdomain, isR in isRichards.items(): + if isR: + pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting']}) + else: + pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'] + - p_e_sym[subdomain]['wetting']}) + + +symbols = {"x": x, + "y": y, + "t": t} +# turn above symbolic code into exact solution for dolphin and +# construct the rhs that matches the above exact solution. +exact_solution_example = hlp.generate_exact_solution_expressions( + symbols=symbols, + isRichards=isRichards, + symbolic_pressure=p_e_sym, + symbolic_capillary_pressure=pc_e_sym, + saturation_pressure_relationship=S_pc_sym, + saturation_pressure_relationship_prime=S_pc_sym_prime, + viscosity=viscosity, + porosity=porosity, + relative_permeability=relative_permeability, + relative_permeability_prime=ka_prime, + densities=densities, + gravity_acceleration=gravity_acceleration, + include_gravity=include_gravity, + ) +source_expression = exact_solution_example['source'] +exact_solution = exact_solution_example['exact_solution'] +initial_condition = exact_solution_example['initial_condition'] + +# Dictionary of dirichlet boundary conditions. +dirichletBC = dict() +# similarly to the outer boundary dictionary, if a patch has no outer boundary +# None should be written instead of an expression. +# This is a bit of a brainfuck: +# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind. +# Since a domain patch can have several disjoint outer boundary parts, the +# expressions need to get an enumaration index which starts at 0. +# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of +# subdomain ind and boundary part j. +# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting'] +# return the actual expression needed for the dirichlet condition for both +# phases if present. + +# subdomain index: {outer boudary part index: {phase: expression}} +for subdomain in isRichards.keys(): + # if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None + if outer_boundary_def_points[subdomain] is None: + dirichletBC.update({subdomain: None}) + else: + dirichletBC.update({subdomain: dict()}) + # set the dirichlet conditions to be the same code as exact solution on + # the subdomain. + for outer_boundary_ind in outer_boundary_def_points[subdomain].keys(): + dirichletBC[subdomain].update( + {outer_boundary_ind: exact_solution[subdomain]} + ) + + +# def saturation(pressure, subdomain_index): +# # inverse capillary pressure-saturation-relationship +# return df.conditional(pressure < 0, 1/((1 - pressure)**(1/(subdomain_index + 1))), 1) +# +# sa +for starttime in starttimes: + for mesh_resolution, solver_tol in resolutions.items(): + # initialise LDD simulation class + simulation = ldd.LDDsimulation( + tol=1E-14, + LDDsolver_tol=solver_tol, + debug=debugflag, + max_iter_num=max_iter_num, + FEM_Lagrange_degree=FEM_Lagrange_degree, + mesh_study=mesh_study + ) + + simulation.set_parameters(use_case=use_case, + output_dir=output_string, + subdomain_def_points=subdomain_def_points, + isRichards=isRichards, + interface_def_points=interface_def_points, + outer_boundary_def_points=outer_boundary_def_points, + adjacent_subdomains=adjacent_subdomains, + mesh_resolution=mesh_resolution, + viscosity=viscosity, + porosity=porosity, + L=L, + lambda_param=lambda_param, + relative_permeability=relative_permeability, + saturation=sat_pressure_relationship, + starttime=starttime, + number_of_timesteps=number_of_timesteps, + number_of_timesteps_to_analyse=number_of_timesteps_to_analyse, + plot_timestep_every=plot_timestep_every, + timestep_size=timestep_size, + sources=source_expression, + initial_conditions=initial_condition, + dirichletBC_expression_strings=dirichletBC, + exact_solution=exact_solution, + densities=densities, + include_gravity=include_gravity, + write2file=write_to_file, + ) + + simulation.initialise() + output_dir = simulation.output_dir + # simulation.write_exact_solution_to_xdmf() + output = simulation.run(analyse_condition=analyse_condition) + for subdomain_index, subdomain_output in output.items(): + mesh_h = subdomain_output['mesh_size'] + for phase, different_errornorms in subdomain_output['errornorm'].items(): + filename = output_dir + "subdomain{}-space-time-errornorm-{}-phase.csv".format(subdomain_index, phase) + # for errortype, errornorm in different_errornorms.items(): + + # eocfile = open("eoc_filename", "a") + # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" ) + # eocfile.close() + # if subdomain.isRichards:mesh_h + data_dict = { + 'mesh_parameter': mesh_resolution, + 'mesh_h': mesh_h, + } + for error_type, errornorms in different_errornorms.items(): + data_dict.update( + {error_type: errornorms} + ) + errors = pd.DataFrame(data_dict, index=[mesh_resolution]) + # check if file exists + if os.path.isfile(filename) == True: + with open(filename, 'a') as f: + errors.to_csv(f, header=False, sep='\t', encoding='utf-8', index=False) + else: + errors.to_csv(filename, sep='\t', encoding='utf-8', index=False) diff --git a/TP-one-patch/mesh_study_for_fixed_timestep/R-one-patch-mesh-study-fixed-timestep.py b/TP-one-patch/mesh_study_for_fixed_timestep/R-one-patch-mesh-study-fixed-timestep.py new file mode 100755 index 0000000..14677c9 --- /dev/null +++ b/TP-one-patch/mesh_study_for_fixed_timestep/R-one-patch-mesh-study-fixed-timestep.py @@ -0,0 +1,491 @@ +#!/usr/bin/python3 +import dolfin as df +import mshr +import numpy as np +import sympy as sym +import typing as tp +import domainPatch as dp +import LDDsimulation as ldd +import functools as ft +import helpers as hlp +import datetime +import os +import pandas as pd + +date = datetime.datetime.now() +datestr = date.strftime("%Y-%m-%d") +#import ufl as ufl + +# init sympy session +sym.init_printing() + +use_case = "R-one-patch-mesh-study-fixed-timestep-new-errornorm" +# solver_tol = 5E-9 +max_iter_num = 1000 +FEM_Lagrange_degree = 1 +mesh_study = True +# resolutions = {128: 1e-8} #[1,2,3,4,5,10,20,40,75,100] +resolutions = { + 1: 1e-8, + 2: 1e-8, + 4: 1e-8, + 8: 1e-8, + 16: 1e-8, + 32: 1e-8, + 64: 1e-8, + # 128: 1e-8, + # 256: 1e-8, + # 512: 1e-8, + } + +############ GRID ####################### +# mesh_resolution = 20 +timestep_size = 0.012 +number_of_timesteps = 1 +plot_timestep_every = 1 +# decide how many timesteps you want analysed. Analysed means, that we write out +# subsequent errors of the L-iteration within the timestep. +number_of_timesteps_to_analyse = 1 +starttimes = [0.0] +# starttimes = [0.0, 0.05] + +# starttimes = { +# 1: 0.0 +# 2: 0.05 +# 4: 0.1 +# 8: 0.2 +# 16: 0.4 +# 32: 0.7 +# 64: 1.0 +# 128: 1.3 +# } + +Lw = 0.025 #/timestep_size +Lnw=Lw + +lambda_w = 0 +lambda_nw = 0 + +include_gravity = False +debugflag = True +analyse_condition = False + +if mesh_study: + output_string = "./output/{}-{}_timesteps{}_P{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree) +else: + for tol in resolutions.values(): + solver_tol = tol + output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol) + +# toggle what should be written to files +if mesh_study: + write_to_file = { + 'space_errornorms': True, + 'meshes_and_markers': True, + 'L_iterations_per_timestep': True, + 'solutions': True, + 'absolute_differences': True, + 'condition_numbers': analyse_condition, + 'subsequent_errors': True + } +else: + write_to_file = { + 'space_errornorms': True, + 'meshes_and_markers': True, + 'L_iterations_per_timestep': False, + 'solutions': True, + 'absolute_differences': True, + 'condition_numbers': analyse_condition, + 'subsequent_errors': True + } + +##### Domain and Interface #### +# global simulation domain domain +sub_domain0_vertices = [df.Point(-1.0, -1.0), # + df.Point(1.0, -1.0), # + df.Point(1.0, 1.0), # + df.Point(-1.0, 1.0)] + +subdomain0_outer_boundary_verts = { + 0: [sub_domain0_vertices[0], + sub_domain0_vertices[1], + sub_domain0_vertices[2], + sub_domain0_vertices[3], + sub_domain0_vertices[0]] +} + +# list of subdomains given by the boundary polygon vertices. +# Subdomains are given as a list of dolfin points forming +# a closed polygon, such that mshr.Polygon(subdomain_def_points[i]) can be used +# to create the subdomain. subdomain_def_points[0] contains the +# vertices of the global simulation domain and subdomain_def_points[i] contains the +# vertices of the subdomain i. +subdomain_def_points = [sub_domain0_vertices] +# in the below list, index 0 corresponds to the 12 interface which has index 1 +interface_def_points = None + +# if a subdomain has no outer boundary write None instead, i.e. +# i: None +# if i is the index of the inner subdomain. +outer_boundary_def_points = { + # subdomain number + 0 : subdomain0_outer_boundary_verts +} + +# adjacent_subdomains[i] contains the indices of the subdomains sharing the +# interface i (i.e. given by interface_def_points[i]). +adjacent_subdomains = None +isRichards = { + 0: True, # + } + +viscosity = {# +# subdom_num : viscosity + 0 : {'wetting' :1, + 'nonwetting': 1}, # +} + +porosity = {# +# subdom_num : porosity + 0: 1,# +} + +# Dict of the form: { subdom_num : density } +densities = { + 0: {'wetting': 1, #997, + 'nonwetting': 1}, #1225} +} + +gravity_acceleration = 9.81 + +L = {# +# subdom_num : subdomain L for L-scheme + 0: {'wetting' :Lw, + 'nonwetting': Lnw},# +} + +lambda_param = {# +# subdom_num : lambda parameter for the L-scheme + 0: {'wetting' :lambda_w, + 'nonwetting': lambda_nw},# +} + +## relative permeabilty functions on subdomain 1 +def rel_perm1w(s): + # relative permeabilty wetting on subdomain1 + return s**2 + +def rel_perm1nw(s): + # relative permeabilty nonwetting on subdomain1 + return (1-s)**2 + +_rel_perm1w = ft.partial(rel_perm1w) +_rel_perm1nw = ft.partial(rel_perm1nw) + +subdomain1_rel_perm = { + 'wetting': _rel_perm1w,# + 'nonwetting': _rel_perm1nw +} + +## dictionary of relative permeabilties on all domains. +relative_permeability = {# + 0: subdomain1_rel_perm, +} + +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 1 +def rel_perm1w_prime(s): + # relative permeabilty on subdomain1 + return 2*s + +def rel_perm1nw_prime(s): + # relative permeabilty on subdomain1 + return -2*(1-s) + +_rel_perm1w_prime = ft.partial(rel_perm1w_prime) +_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime) + +subdomain1_rel_perm_prime = { + 'wetting': _rel_perm1w_prime, + 'nonwetting': _rel_perm1nw_prime +} + +# dictionary of relative permeabilties on all domains. +ka_prime = { + 0: subdomain1_rel_perm_prime, +} + + + +def saturation(pc, index): + # inverse capillary pressure-saturation-relationship + return df.conditional(pc > 0, 1/((1 + pc)**(1/(index + 1))), 1) + +def saturation_sym(pc, index): + # inverse capillary pressure-saturation-relationship + return 1/((1 + pc)**(1/(index + 1))) + + +# derivative of S-pc relationship with respect to pc. This is needed for the +# construction of a analytic solution. +def saturation_sym_prime(pc, index): + # inverse capillary pressure-saturation-relationship + return -1/((index+1)*(1 + pc)**((index+2)/(index+1))) + + +# def saturation(pc, index): +# # inverse capillary pressure-saturation-relationship +# return df.conditional(pc > 0, -index*pc, 1) +# +# +# def saturation_sym(pc, index): +# # inverse capillary pressure-saturation-relationship +# return -index*pc +# +# +# # derivative of S-pc relationship with respect to pc. This is needed for the +# # construction of a analytic solution. +# def saturation_sym_prime(pc, index): +# # inverse capillary pressure-saturation-relationship +# return -index + + +# note that the conditional definition of S-pc in the nonsymbolic part will be +# incorporated in the construction of the exact solution below. +S_pc_sym = { + 0: ft.partial(saturation_sym, index=1), +} + +S_pc_sym_prime = { + 0: ft.partial(saturation_sym_prime, index=1), +} + +sat_pressure_relationship = { + 0: ft.partial(saturation, index=1), +} + + +############################################# +# Manufacture source expressions with sympy # +############################################# +x, y = sym.symbols('x[0], x[1]') # needed by UFL +t = sym.symbols('t', positive=True) + +epsilon_x_inner = 0.7 +epsilon_x_outer = 0.99 +epsilon_y_inner = epsilon_x_inner +epsilon_y_outer = epsilon_x_outer + +def mollifier(x, epsilon): + """ one d mollifier """ + out_expr = sym.exp(-1/(1-(x/epsilon)**2) + 1) + return out_expr + +mollifier_handle = ft.partial(mollifier, epsilon=epsilon_x_inner) + +pw_sym_x = sym.Piecewise( + (mollifier_handle(x), x**2 < epsilon_x_outer**2), + (0, True) +) +pw_sym_y = sym.Piecewise( + (mollifier_handle(y), y**2 < epsilon_y_outer**2), + (0, True) +) + +def mollifier2d(x, y, epsilon): + """ one d mollifier """ + out_expr = sym.exp(-1/(1-(x**2 + y**2)/epsilon**2) + 1) + return out_expr + +mollifier2d_handle = ft.partial(mollifier2d, epsilon=epsilon_x_outer) + +pw_sym2d_x = sym.Piecewise( + (mollifier2d_handle(x, y), x**2 + y**2 < epsilon_x_outer**2), + (0, True) +) + +zero_on_epsilon_shrinking_of_subdomain = sym.Piecewise( + (mollifier_handle(sym.sqrt(x**2 + y**2)+2*epsilon_x_inner), ((-2*epsilon_x_inner<sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<-epsilon_x_inner))), + (0, ((-epsilon_x_inner<=sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<=epsilon_x_inner))), + (mollifier_handle(sym.sqrt(x**2 + y**2)-2*epsilon_x_inner), ((epsilon_x_inner<sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<2*epsilon_x_inner))), + (1, True), +) + +zero_on_epsilon_shrinking_of_subdomain_x = sym.Piecewise( + (mollifier_handle(x+2*epsilon_x_inner), ((-2*epsilon_x_inner<x) & (x<-epsilon_x_inner))), + (0, ((-epsilon_x_inner<=x) & (x<=epsilon_x_inner))), + (mollifier_handle(x-2*epsilon_x_inner), ((epsilon_x_inner<x) & (x<2*epsilon_x_inner))), + (1, True), +) + +zero_on_epsilon_shrinking_of_subdomain_y = sym.Piecewise( + (1, y<=-2*epsilon_x_inner), + (mollifier_handle(y+2*epsilon_x_inner), ((-2*epsilon_x_inner<y) & (y<-epsilon_x_inner))), + (0, ((-epsilon_x_inner<=y) & (y<=epsilon_x_inner))), + (mollifier_handle(y-2*epsilon_x_inner), ((epsilon_x_inner<y) & (y<2*epsilon_x_inner))), + (1, True), +) + +zero_on_shrinking = zero_on_epsilon_shrinking_of_subdomain #zero_on_epsilon_shrinking_of_subdomain_x + zero_on_epsilon_shrinking_of_subdomain_y +gaussian = pw_sym2d_x# pw_sym_y*pw_sym_x +cutoff = gaussian/(gaussian + zero_on_shrinking) + +# # construction of differentiable characteristic function. +# def smooth_characteristic_func_on_epsilon_shrinking_of_subdomain0(x, y, epsilon_x_inner, epsilon_y_inner, epsilon_x_outer, epsilon_y_outer): +# dist_to_complement_x = ft.partial(mollifier, epsilon=epsilon_x_inner) +# dist_to_complement_y = ft.partial(mollifier, epsilon=epsilon_y_inner) +# dist_to_complement = dist_to_complement_y(y)*dist_to_complement_x(x) +# dist_to_eps_shrinking_x = ft.partial(zero_outside_epsilon_thickening_of_subdomain, epsilon=epsilon_x_outer) +# dist_to_eps_shrinking_y = ft.partial(zero_outside_epsilon_thickening_of_subdomain, epsilon=epsilon_y_outer) +# dist_to_eps_shrinking = dist_to_eps_shrinking_y(y)*dist_to_eps_shrinking_x(x) +# return dist_to_complement/(dist_to_eps_shrinking + dist_to_complement) +# + +# def dist_to_epsilon_thickening_of_subdomain0_complement(x, y, epsilon): +# """ calculates the (euklidian distance)^2 of a point x,y to the epsilon +# thickening of the complement of the domain. +# """ +# is_inside = ((1-sym.Abs(x) > epsilon) & (1-sym.Abs(y) > epsilon)) +# sym.Piecewise((0, is_inside)) + +p_e_sym = { + 0: {'wetting': (-7 - (1+t*t)*(1 + x*x + y*y)), #*cutoff, + 'nonwetting': (-1 -t*(1.1+y + x**2))}, #*cutoff}, +} + +pc_e_sym = dict() +for subdomain, isR in isRichards.items(): + if isR: + pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting']}) + else: + pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'] + - p_e_sym[subdomain]['wetting']}) + + +symbols = {"x": x, + "y": y, + "t": t} +# turn above symbolic code into exact solution for dolphin and +# construct the rhs that matches the above exact solution. +exact_solution_example = hlp.generate_exact_solution_expressions( + symbols=symbols, + isRichards=isRichards, + symbolic_pressure=p_e_sym, + symbolic_capillary_pressure=pc_e_sym, + saturation_pressure_relationship=S_pc_sym, + saturation_pressure_relationship_prime=S_pc_sym_prime, + viscosity=viscosity, + porosity=porosity, + relative_permeability=relative_permeability, + relative_permeability_prime=ka_prime, + densities=densities, + gravity_acceleration=gravity_acceleration, + include_gravity=include_gravity, + ) +source_expression = exact_solution_example['source'] +exact_solution = exact_solution_example['exact_solution'] +initial_condition = exact_solution_example['initial_condition'] + +# Dictionary of dirichlet boundary conditions. +dirichletBC = dict() +# similarly to the outer boundary dictionary, if a patch has no outer boundary +# None should be written instead of an expression. +# This is a bit of a brainfuck: +# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind. +# Since a domain patch can have several disjoint outer boundary parts, the +# expressions need to get an enumaration index which starts at 0. +# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of +# subdomain ind and boundary part j. +# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting'] +# return the actual expression needed for the dirichlet condition for both +# phases if present. + +# subdomain index: {outer boudary part index: {phase: expression}} +for subdomain in isRichards.keys(): + # if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None + if outer_boundary_def_points[subdomain] is None: + dirichletBC.update({subdomain: None}) + else: + dirichletBC.update({subdomain: dict()}) + # set the dirichlet conditions to be the same code as exact solution on + # the subdomain. + for outer_boundary_ind in outer_boundary_def_points[subdomain].keys(): + dirichletBC[subdomain].update( + {outer_boundary_ind: exact_solution[subdomain]} + ) + + +# def saturation(pressure, subdomain_index): +# # inverse capillary pressure-saturation-relationship +# return df.conditional(pressure < 0, 1/((1 - pressure)**(1/(subdomain_index + 1))), 1) +# +# sa +for starttime in starttimes: + for mesh_resolution, solver_tol in resolutions.items(): + # initialise LDD simulation class + simulation = ldd.LDDsimulation( + tol=1E-14, + LDDsolver_tol=solver_tol, + debug=debugflag, + max_iter_num=max_iter_num, + FEM_Lagrange_degree=FEM_Lagrange_degree, + mesh_study=mesh_study + ) + + simulation.set_parameters(use_case=use_case, + output_dir=output_string, + subdomain_def_points=subdomain_def_points, + isRichards=isRichards, + interface_def_points=interface_def_points, + outer_boundary_def_points=outer_boundary_def_points, + adjacent_subdomains=adjacent_subdomains, + mesh_resolution=mesh_resolution, + viscosity=viscosity, + porosity=porosity, + L=L, + lambda_param=lambda_param, + relative_permeability=relative_permeability, + saturation=sat_pressure_relationship, + starttime=starttime, + number_of_timesteps=number_of_timesteps, + number_of_timesteps_to_analyse=number_of_timesteps_to_analyse, + plot_timestep_every=plot_timestep_every, + timestep_size=timestep_size, + sources=source_expression, + initial_conditions=initial_condition, + dirichletBC_expression_strings=dirichletBC, + exact_solution=exact_solution, + densities=densities, + include_gravity=include_gravity, + write2file=write_to_file, + ) + + simulation.initialise() + output_dir = simulation.output_dir + # simulation.write_exact_solution_to_xdmf() + output = simulation.run(analyse_condition=analyse_condition) + for subdomain_index, subdomain_output in output.items(): + mesh_h = subdomain_output['mesh_size'] + for phase, different_errornorms in subdomain_output['errornorm'].items(): + filename = output_dir + "subdomain{}-space-time-errornorm-{}-phase.csv".format(subdomain_index, phase) + # for errortype, errornorm in different_errornorms.items(): + + # eocfile = open("eoc_filename", "a") + # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" ) + # eocfile.close() + # if subdomain.isRichards:mesh_h + data_dict = { + 'mesh_parameter': mesh_resolution, + 'mesh_h': mesh_h, + } + for error_type, errornorms in different_errornorms.items(): + data_dict.update( + {error_type: errornorms} + ) + errors = pd.DataFrame(data_dict, index=[mesh_resolution]) + # check if file exists + if os.path.isfile(filename) == True: + with open(filename, 'a') as f: + errors.to_csv(f, header=False, sep='\t', encoding='utf-8', index=False) + else: + errors.to_csv(filename, sep='\t', encoding='utf-8', index=False) diff --git a/TP-one-patch/mesh_study_for_fixed_timestep/TP-one-patch-mesh-study-fixed-timestep-nonwetting0.py b/TP-one-patch/mesh_study_for_fixed_timestep/TP-one-patch-mesh-study-fixed-timestep-nonwetting0.py index 6135ce9..f15efcf 100755 --- a/TP-one-patch/mesh_study_for_fixed_timestep/TP-one-patch-mesh-study-fixed-timestep-nonwetting0.py +++ b/TP-one-patch/mesh_study_for_fixed_timestep/TP-one-patch-mesh-study-fixed-timestep-nonwetting0.py @@ -35,7 +35,7 @@ resolutions = { 64: 1e-10, 128: 1e-10, 256: 1e-10, - 512: 1e-10, + # 512: 1e-10, } ############ GRID ####################### @@ -46,7 +46,8 @@ plot_timestep_every = 1 # decide how many timesteps you want analysed. Analysed means, that we write out # subsequent errors of the L-iteration within the timestep. number_of_timesteps_to_analyse = 1 -starttimes = [0.0, 0.05, 0.1, 0.7, 1.3] +# starttimes = [0.0, 0.05, 0.1, 0.7, 1.3] +starttimes = [0.7] # starttimes = { # 1: 0.0 diff --git a/TP-one-patch/mesh_study_for_fixed_timestep/TP-one-patch-mesh-study-fixed-timestep-wetting0.py b/TP-one-patch/mesh_study_for_fixed_timestep/TP-one-patch-mesh-study-fixed-timestep-wetting0.py index b97aa54..9821788 100755 --- a/TP-one-patch/mesh_study_for_fixed_timestep/TP-one-patch-mesh-study-fixed-timestep-wetting0.py +++ b/TP-one-patch/mesh_study_for_fixed_timestep/TP-one-patch-mesh-study-fixed-timestep-wetting0.py @@ -19,7 +19,7 @@ datestr = date.strftime("%Y-%m-%d") # init sympy session sym.init_printing() -use_case = "TP-one-patch-mesh-study-fixed-timestep-wetting-constant" +use_case = "TP-one-patch-mesh-study-fixed-timestep-wetting-constantexi" # solver_tol = 5E-9 max_iter_num = 2000 FEM_Lagrange_degree = 1 diff --git a/TP-one-patch/mesh_study_for_fixed_timestep/TP-one-patch-mesh-study-fixed-timestep.py b/TP-one-patch/mesh_study_for_fixed_timestep/TP-one-patch-mesh-study-fixed-timestep.py index 6cd9a7c..5c107d5 100755 --- a/TP-one-patch/mesh_study_for_fixed_timestep/TP-one-patch-mesh-study-fixed-timestep.py +++ b/TP-one-patch/mesh_study_for_fixed_timestep/TP-one-patch-mesh-study-fixed-timestep.py @@ -21,26 +21,26 @@ sym.init_printing() use_case = "TP-one-patch-mesh-study-fixed-timestep" # solver_tol = 5E-9 -max_iter_num = 2000 +max_iter_num = 1000 FEM_Lagrange_degree = 1 mesh_study = True # resolutions = {128: 1e-7} #[1,2,3,4,5,10,20,40,75,100] resolutions = { - 1: 1e-10, - 2: 1e-10, - 4: 1e-10, - 8: 1e-10, - 16: 1e-10, - 32: 1e-10, - 64: 1e-10, - 128: 1e-10, - 256: 1e-10, - 512: 1e-10, + 1: 5e-7, + 2: 5e-7, + 4: 5e-7, + 8: 5e-7, + 16: 5e-7, + 32: 5e-7, + 64: 5e-7, + 128: 5e-7, + # 256: 1e-10, + # 512: 1e-10, } ############ GRID ####################### # mesh_resolution = 20 -timestep_size = 0.01 +timestep_size = 0.001 number_of_timesteps = 1 plot_timestep_every = 1 # decide how many timesteps you want analysed. Analysed means, that we write out @@ -59,14 +59,14 @@ starttimes = [0.0, 0.05, 0.1, 0.7, 1.3] # 128: 1.3 # } -Lw = 0.05 #/timestep_size +Lw = 0.025 #/timestep_size Lnw=Lw lambda_w = 0 lambda_nw = 0 include_gravity = False -debugflag = True +debugflag = False analyse_condition = False if mesh_study: -- GitLab