diff --git a/TP-one-patch/debug_tests/R-one-patch-const-in-time.py b/TP-one-patch/debug_tests/R-one-patch-const-in-time.py new file mode 100755 index 0000000000000000000000000000000000000000..a8e2e6d5eaa9e28797c4ebd75f3b3bffda3d4b8b --- /dev/null +++ b/TP-one-patch/debug_tests/R-one-patch-const-in-time.py @@ -0,0 +1,528 @@ +#!/usr/bin/python3 +import dolfin as df +import mshr +import numpy as np +import sympy as sym +import typing as tp +import domainPatch as dp +import LDDsimulation as ldd +import functools as ft +import helpers as hlp +import datetime +import os +import pandas as pd + +date = datetime.datetime.now() +datestr = date.strftime("%Y-%m-%d") +#import ufl as ufl + +# init sympy session +sym.init_printing() + +use_case = "R-one-patch-mesh-study-const-in-time" +# solver_tol = 5E-9 +max_iter_num = 1000 +FEM_Lagrange_degree = 1 +mesh_study = True +# resolutions = {128: 1e-7} #[1,2,3,4,5,10,20,40,75,100] +resolutions = { + #1: 5e-7, + # 2: 5e-7, + # 4: 5e-7, + # 8: 5e-7, + # 16: 5e-7, + # 32: 5e-7, + 64: 5e-7, + # 128: 5e-7, + # 256: 1e-10, + # 512: 1e-10, + } + +############ GRID ####################### +# mesh_resolution = 20 +timestep_size = 0.005 +number_of_timesteps = 1 +plot_timestep_every = 1 +# decide how many timesteps you want analysed. Analysed means, that we write out +# subsequent errors of the L-iteration within the timestep. +number_of_timesteps_to_analyse = 1 +starttimes = [0.0, 0.5, 1] + +# starttimes = { +# 1: 0.0 +# 2: 0.05 +# 4: 0.1 +# 8: 0.2 +# 16: 0.4 +# 32: 0.7 +# 64: 1.0 +# 128: 1.3 +# } + +Lw = 0.025 #/timestep_size +Lnw=Lw + +lambda_w = 0 +lambda_nw = 0 + +include_gravity = False +debugflag = False +analyse_condition = False + +if mesh_study: + output_string = "./output/{}-{}_timesteps{}_P{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree) +else: + for tol in resolutions.values(): + solver_tol = tol + output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol) + +# toggle what should be written to files +if mesh_study: + write_to_file = { + 'space_errornorms': True, + 'meshes_and_markers': True, + 'L_iterations_per_timestep': True, + 'solutions': True, + 'absolute_differences': True, + 'condition_numbers': analyse_condition, + 'subsequent_errors': True + } +else: + write_to_file = { + 'space_errornorms': True, + 'meshes_and_markers': True, + 'L_iterations_per_timestep': False, + 'solutions': True, + 'absolute_differences': True, + 'condition_numbers': analyse_condition, + 'subsequent_errors': True + } + + +##### Domain and Interface #### +# global simulation domain domain +sub_domain0_vertices = [df.Point(-1.0,-1.0), # + df.Point(1.0,-1.0),# + df.Point(1.0,1.0),# + df.Point(-1.0,1.0)] + +subdomain0_outer_boundary_verts = { + 0: [sub_domain0_vertices[0], + sub_domain0_vertices[1], + sub_domain0_vertices[2], + sub_domain0_vertices[3], + sub_domain0_vertices[0]] +} + +# list of subdomains given by the boundary polygon vertices. +# Subdomains are given as a list of dolfin points forming +# a closed polygon, such that mshr.Polygon(subdomain_def_points[i]) can be used +# to create the subdomain. subdomain_def_points[0] contains the +# vertices of the global simulation domain and subdomain_def_points[i] contains the +# vertices of the subdomain i. +subdomain_def_points = [sub_domain0_vertices] +# in the below list, index 0 corresponds to the 12 interface which has index 1 +interface_def_points = None + +# if a subdomain has no outer boundary write None instead, i.e. +# i: None +# if i is the index of the inner subdomain. +outer_boundary_def_points = { + # subdomain number + 0 : subdomain0_outer_boundary_verts +} + +# adjacent_subdomains[i] contains the indices of the subdomains sharing the +# interface i (i.e. given by interface_def_points[i]). +adjacent_subdomains = None +isRichards = { + 0: True, # + } + +viscosity = {# +# subdom_num : viscosity + 0 : {'wetting' :1, + 'nonwetting': 1}, # +} + +porosity = {# +# subdom_num : porosity + 0: 1,# +} + +# Dict of the form: { subdom_num : density } +densities = { + 0: {'wetting': 1, #997, + 'nonwetting': 1}, #1225} +} + +gravity_acceleration = 9.81 + +L = {# +# subdom_num : subdomain L for L-scheme + 0: {'wetting' :Lw, + 'nonwetting': Lnw},# +} + +lambda_param = {# +# subdom_num : lambda parameter for the L-scheme + 0: {'wetting' :lambda_w, + 'nonwetting': lambda_nw},# +} + +## relative permeabilty functions on subdomain 1 +def rel_perm1w(s): + # relative permeabilty wetting on subdomain1 + return s**2 + +def rel_perm1nw(s): + # relative permeabilty nonwetting on subdomain1 + return (1-s)**2 + +_rel_perm1w = ft.partial(rel_perm1w) +_rel_perm1nw = ft.partial(rel_perm1nw) + +subdomain1_rel_perm = { + 'wetting': _rel_perm1w,# + 'nonwetting': _rel_perm1nw +} + +## dictionary of relative permeabilties on all domains. +relative_permeability = {# + 0: subdomain1_rel_perm, +} + +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 1 +def rel_perm1w_prime(s): + # relative permeabilty on subdomain1 + return 2*s + +def rel_perm1nw_prime(s): + # relative permeabilty on subdomain1 + return -2*(1-s) + +_rel_perm1w_prime = ft.partial(rel_perm1w_prime) +_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime) + +subdomain1_rel_perm_prime = { + 'wetting': _rel_perm1w_prime, + 'nonwetting': _rel_perm1nw_prime +} + +# dictionary of relative permeabilties on all domains. +ka_prime = { + 0: subdomain1_rel_perm_prime, +} + + + +def saturation(pc, index): + # inverse capillary pressure-saturation-relationship + return df.conditional(pc > 0, 1/((1 + pc)**(1/(index + 1))), 1) + + +def saturation_sym(pc, index): + # inverse capillary pressure-saturation-relationship + return 1/((1 + pc)**(1/(index + 1))) + + +# derivative of S-pc relationship with respect to pc. This is needed for the +# construction of a analytic solution. +def saturation_sym_prime(pc, index): + # inverse capillary pressure-saturation-relationship + return -1/((index+1)*(1 + pc)**((index+2)/(index+1))) + + +# note that the conditional definition of S-pc in the nonsymbolic part will be +# incorporated in the construction of the exact solution below. +S_pc_sym = { + 0: ft.partial(saturation_sym, index=1), +} + +S_pc_sym_prime = { + 0: ft.partial(saturation_sym_prime, index=1), +} + +sat_pressure_relationship = { + 0: ft.partial(saturation, index=1), +} + +# # note that the conditional definition of S-pc in the nonsymbolic part will be +# # incorporated in the construction of the exact solution below. +# S_pc_sym_handle = { +# 0: ft.partial(saturation_sym, index=1), +# } +# +# S_pc_sym_prime_handle = { +# 0: ft.partial(saturation_sym_prime, index=1), +# } +# +# sat_pressure_relationship = { +# 0: ft.partial(saturation, index=1), +# } + + +############################################# +# Manufacture source expressions with sympy # +############################################# +x, y = sym.symbols('x[0], x[1]') # needed by UFL +t = sym.symbols('t', positive=True) + +epsilon_x_inner = 0.7 +epsilon_x_outer = 0.99 +epsilon_y_inner = epsilon_x_inner +epsilon_y_outer = epsilon_x_outer + +def mollifier(x, epsilon): + """ one d mollifier """ + out_expr = sym.exp(-1/(1-(x/epsilon)**2) + 1) + return out_expr + +mollifier_handle = ft.partial(mollifier, epsilon=epsilon_x_inner) + +pw_sym_x = sym.Piecewise( + (mollifier_handle(x), x**2 < epsilon_x_outer**2), + (0, True) +) + +pw_sym_y = sym.Piecewise( + (mollifier_handle(y), y**2 < epsilon_y_outer**2), + (0, True) +) + +def mollifier2d(x, y, epsilon): + """ one d mollifier """ + out_expr = sym.exp(-1/(1-(x**2 + y**2)/epsilon**2) + 1) + return out_expr + +mollifier2d_handle = ft.partial(mollifier2d, epsilon=epsilon_x_outer) + +pw_sym2d_x = sym.Piecewise( + (mollifier2d_handle(x, y), x**2 + y**2 < epsilon_x_outer**2), + (0, True) +) + +zero_on_epsilon_shrinking_of_subdomain = sym.Piecewise( + (mollifier_handle(sym.sqrt(x**2 + y**2)+2*epsilon_x_inner), ((-2*epsilon_x_inner<sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<-epsilon_x_inner))), + (0, ((-epsilon_x_inner<=sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<=epsilon_x_inner))), + (mollifier_handle(sym.sqrt(x**2 + y**2)-2*epsilon_x_inner), ((epsilon_x_inner<sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<2*epsilon_x_inner))), + (1, True), +) + +zero_on_epsilon_shrinking_of_subdomain_x = sym.Piecewise( + (mollifier_handle(x+2*epsilon_x_inner), ((-2*epsilon_x_inner<x) & (x<-epsilon_x_inner))), + (0, ((-epsilon_x_inner<=x) & (x<=epsilon_x_inner))), + (mollifier_handle(x-2*epsilon_x_inner), ((epsilon_x_inner<x) & (x<2*epsilon_x_inner))), + (1, True), +) + +zero_on_epsilon_shrinking_of_subdomain_y = sym.Piecewise( + (1, y<=-2*epsilon_x_inner), + (mollifier_handle(y+2*epsilon_x_inner), ((-2*epsilon_x_inner<y) & (y<-epsilon_x_inner))), + (0, ((-epsilon_x_inner<=y) & (y<=epsilon_x_inner))), + (mollifier_handle(y-2*epsilon_x_inner), ((epsilon_x_inner<y) & (y<2*epsilon_x_inner))), + (1, True), +) + +zero_on_shrinking = zero_on_epsilon_shrinking_of_subdomain #zero_on_epsilon_shrinking_of_subdomain_x + zero_on_epsilon_shrinking_of_subdomain_y +gaussian = pw_sym2d_x# pw_sym_y*pw_sym_x +cutoff = gaussian/(gaussian + zero_on_shrinking) + +# # construction of differentiable characteristic function. +# def smooth_characteristic_func_on_epsilon_shrinking_of_subdomain0(x, y, epsilon_x_inner, epsilon_y_inner, epsilon_x_outer, epsilon_y_outer): +# dist_to_complement_x = ft.partial(mollifier, epsilon=epsilon_x_inner) +# dist_to_complement_y = ft.partial(mollifier, epsilon=epsilon_y_inner) +# dist_to_complement = dist_to_complement_y(y)*dist_to_complement_x(x) +# dist_to_eps_shrinking_x = ft.partial(zero_outside_epsilon_thickening_of_subdomain, epsilon=epsilon_x_outer) +# dist_to_eps_shrinking_y = ft.partial(zero_outside_epsilon_thickening_of_subdomain, epsilon=epsilon_y_outer) +# dist_to_eps_shrinking = dist_to_eps_shrinking_y(y)*dist_to_eps_shrinking_x(x) +# return dist_to_complement/(dist_to_eps_shrinking + dist_to_complement) +# + +# def dist_to_epsilon_thickening_of_subdomain0_complement(x, y, epsilon): +# """ calculates the (euklidian distance)^2 of a point x,y to the epsilon +# thickening of the complement of the domain. +# """ +# is_inside = ((1-sym.Abs(x) > epsilon) & (1-sym.Abs(y) > epsilon)) +# sym.Piecewise((0, is_inside)) + +# p_e_sym = { +# 0: {'wetting': (-3 - (1+t*t)*(1 + x*x + y*y))*cutoff, +# 'nonwetting': (-1 -t*(1+y + x**2)**2)*cutoff}, +# } + +p_e_sym = { + 0: {'wetting': -6 -(1 + x*x + y*y)), + 'nonwetting': -1 -(sym.sin(3*(1+y)/2*sym.pi)*sym.sin(5*(1+x)/2*sym.pi))**2}, +} + + +print(f"\n\n\nsymbolic type is {type(p_e_sym[0]['wetting'])}\n\n\n") +# # pw_sym_x*pw_sym_y +# p_e_sym = { +# 0: {'wetting': -3*pw_sym2d_x + 0*t, +# 'nonwetting': -1*pw_sym_x*pw_sym_y+ 0*t}, +# } + +# p_e_sym = { +# 0: {'wetting': -3*cutoff + 0*t, +# 'nonwetting': -1*zero_on_shrinking+ 0*t}, +# } + + +pc_e_sym = dict() +for subdomain, isR in isRichards.items(): + if isR: + pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting']}) + else: + pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'] + - p_e_sym[subdomain]['wetting']}) + + + +# S_pc_sym = { +# 0: sym.Piecewise( +# (1, pc_e_sym[0]<= 0), +# (S_pc_sym_handle[0](pc_e_sym[0]), ((0<pc_e_sym[0])& (pc_e_sym[0] < 1))), +# (0, True) +# ) +# } +# +# S_pc_sym_prime = { +# 0: sym.Piecewise( +# (S_pc_sym_prime_handle[0](pc_e_sym[0]), ((pc_e_sym[0] > 0)& (pc_e_sym[0] < 1))), +# (0, True) +# ) +# } + +symbols = {"x": x, + "y": y, + "t": t} + + +# turn above symbolic code into exact solution for dolphin and +# construct the rhs that matches the above exact solution. +exact_solution_example = hlp.generate_exact_solution_expressions( + symbols=symbols, + isRichards=isRichards, + symbolic_pressure=p_e_sym, + symbolic_capillary_pressure=pc_e_sym, + symbolic_S_pc_relationship=S_pc_sym, + symbolic_S_pc_relationship_prime=S_pc_sym_prime, + viscosity=viscosity, + porosity=porosity, + relative_permeability=relative_permeability, + relative_permeability_prime=ka_prime, + densities=densities, + gravity_acceleration=gravity_acceleration, + include_gravity=include_gravity, + ) +source_expression = exact_solution_example['source'] +exact_solution = exact_solution_example['exact_solution'] +initial_condition = exact_solution_example['initial_condition'] + +# Dictionary of dirichlet boundary conditions. +dirichletBC = dict() +# similarly to the outer boundary dictionary, if a patch has no outer boundary +# None should be written instead of an expression. +# This is a bit of a brainfuck: +# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind. +# Since a domain patch can have several disjoint outer boundary parts, the +# expressions need to get an enumaration index which starts at 0. +# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of +# subdomain ind and boundary part j. +# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting'] +# return the actual expression needed for the dirichlet condition for both +# phases if present. + +# subdomain index: {outer boudary part index: {phase: expression}} +for subdomain in isRichards.keys(): + # if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None + if outer_boundary_def_points[subdomain] is None: + dirichletBC.update({subdomain: None}) + else: + dirichletBC.update({subdomain: dict()}) + # set the dirichlet conditions to be the same code as exact solution on + # the subdomain. + for outer_boundary_ind in outer_boundary_def_points[subdomain].keys(): + dirichletBC[subdomain].update( + {outer_boundary_ind: exact_solution[subdomain]} + ) + + +# def saturation(pressure, subdomain_index): +# # inverse capillary pressure-saturation-relationship +# return df.conditional(pressure < 0, 1/((1 - pressure)**(1/(subdomain_index + 1))), 1) +# +# sa + +for starttime in starttimes: + for mesh_resolution, solver_tol in resolutions.items(): + # initialise LDD simulation class + simulation = ldd.LDDsimulation( + tol=1E-14, + LDDsolver_tol=solver_tol, + debug=debugflag, + max_iter_num=max_iter_num, + FEM_Lagrange_degree=FEM_Lagrange_degree, + mesh_study=mesh_study + ) + + simulation.set_parameters(use_case=use_case, + output_dir=output_string, + subdomain_def_points=subdomain_def_points, + isRichards=isRichards, + interface_def_points=interface_def_points, + outer_boundary_def_points=outer_boundary_def_points, + adjacent_subdomains=adjacent_subdomains, + mesh_resolution=mesh_resolution, + viscosity=viscosity, + porosity=porosity, + L=L, + lambda_param=lambda_param, + relative_permeability=relative_permeability, + saturation=sat_pressure_relationship, + starttime=starttime, + number_of_timesteps=number_of_timesteps, + number_of_timesteps_to_analyse=number_of_timesteps_to_analyse, + plot_timestep_every=plot_timestep_every, + timestep_size=timestep_size, + sources=source_expression, + initial_conditions=initial_condition, + dirichletBC_expression_strings=dirichletBC, + exact_solution=exact_solution, + densities=densities, + include_gravity=include_gravity, + write2file=write_to_file, + ) + + simulation.initialise() + output_dir = simulation.output_dir + # simulation.write_exact_solution_to_xdmf() + output = simulation.run(analyse_condition=analyse_condition) + for subdomain_index, subdomain_output in output.items(): + mesh_h = subdomain_output['mesh_size'] + for phase, different_errornorms in subdomain_output['errornorm'].items(): + filename = output_dir + "subdomain{}-space-time-errornorm-{}-phase.csv".format(subdomain_index, phase) + # for errortype, errornorm in different_errornorms.items(): + + # eocfile = open("eoc_filename", "a") + # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" ) + # eocfile.close() + # if subdomain.isRichards:mesh_h + data_dict = { + 'mesh_parameter': mesh_resolution, + 'mesh_h': mesh_h, + } + for error_type, errornorms in different_errornorms.items(): + data_dict.update( + {error_type: errornorms} + ) + errors = pd.DataFrame(data_dict, index=[mesh_resolution]) + # check if file exists + if os.path.isfile(filename) == True: + with open(filename, 'a') as f: + errors.to_csv(f, header=False, sep='\t', encoding='utf-8', index=False) + else: + errors.to_csv(filename, sep='\t', encoding='utf-8', index=False)