From 16a71074c306f6c7be2ac446495f244ea6f9feb7 Mon Sep 17 00:00:00 2001 From: David Seus <david.seus@ians.uni-stuttgart.de> Date: Sat, 25 May 2019 17:55:58 +0200 Subject: [PATCH] fix _is_on_line_segment_method --- LDDsimulation/boundary_and_interface.py | 13 +- .../RR-multi-patch-with-gravity.py | 6 +- .../TP-TP-layered_soil_with_inner_patch.py | 569 ++++++++++++++++++ TP-TP-layered-soil-case/TP-TP-layered_soil.py | 24 +- 4 files changed, 591 insertions(+), 21 deletions(-) create mode 100755 TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch.py diff --git a/LDDsimulation/boundary_and_interface.py b/LDDsimulation/boundary_and_interface.py index 76b78db..48f6ea7 100644 --- a/LDDsimulation/boundary_and_interface.py +++ b/LDDsimulation/boundary_and_interface.py @@ -177,11 +177,6 @@ class BoundaryPart(df.SubDomain): xmax = max(p1[0], p2[0]) ymin = min(p1[1], p2[1]) ymax = max(p1[1], p2[1]) - # print(f"test if point {p} is on line segment between {p1} or {p2}") - # check if p == p1 or p == p2 - if np.fabs((p[0] - xmax)*(p[0] - xmin)) < tol and np.fabs((p[1] - ymax)*(p[1] - ymin)) < tol: - #print(f"point {p} is close to either {p1} or {p2}") - return True # check there holds p1[0] < p[0] < p2[0]. If not, p cannot be on the line segment # same needs to be done for p1[1] < p[1] < p2[1] @@ -609,16 +604,24 @@ class Interface(BoundaryPart): # of edges on the boundary. We need the number of nodes, however. number_of_interface_vertices = sum(interface_marker.array() == interface_marker_value) + 1 + print(f"interface marker array",interface_marker.array() == interface_marker_value) + print(f"facets marked by interface marker", interface_marker.array()) + print(f"interface{self.global_index} has coordinates {self.coordinates(interface_marker, interface_marker_value)}") + # for cell in interface_marker[interface_marker.array() == interface_marker_value]: + # print(cell.get_cell_data()) # print(f"\nDetermined number of interface vertices as {number_of_interface_vertices}") # we need one mesh_dimension + 1 columns to store the the index of the node. vertex_indices = np.zeros(shape = number_of_interface_vertices, dtype=int) # print(f"allocated array for vertex_indices\n", vertex_indices) # interface_vertex_number = 0 # mesh_vertex_index = 0 + print(f"\n we are one interface{self.global_index}", + f" we determined {number_of_interface_vertices} interface vertices.") for vert_num, x in enumerate(mesh_coordinates): if self._is_on_boundary_part(x): # print(f"Vertex {x} with index {vert_num} is on interface") # print(f"interface_vertex_number = {interface_vertex_number}") + print(f"dfPoint = ({x}) is on interface{self.global_index}") vertex_indices[interface_vertex_number] = vert_num interface_vertex_number += 1 diff --git a/RR-multi-patch-plus-gravity/RR-multi-patch-with-gravity.py b/RR-multi-patch-plus-gravity/RR-multi-patch-with-gravity.py index d1375f3..16d3d63 100755 --- a/RR-multi-patch-plus-gravity/RR-multi-patch-with-gravity.py +++ b/RR-multi-patch-plus-gravity/RR-multi-patch-with-gravity.py @@ -15,15 +15,15 @@ sym.init_printing() # ----------------------------------------------------------------------------# # ------------------- MESH ---------------------------------------------------# # ----------------------------------------------------------------------------# -mesh_resolution = 30 +mesh_resolution = 3 # ----------------------------------------:-------------------------------------# # ------------------- TIME ---------------------------------------------------# # ----------------------------------------------------------------------------# timestep_size = 0.01 -number_of_timesteps = 500 +number_of_timesteps = 1 # decide how many timesteps you want analysed. Analysed means, that we write # out subsequent errors of the L-iteration within the timestep. -number_of_timesteps_to_analyse = 11 +number_of_timesteps_to_analyse = 0 starttime = 0 diff --git a/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch.py b/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch.py new file mode 100755 index 0000000..b729462 --- /dev/null +++ b/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch.py @@ -0,0 +1,569 @@ +#!/usr/bin/python3 +"""This program sets up a domain together with a decomposition into subdomains +modelling layered soil. This is used for our LDD article with tp-tp and tp-r +coupling. + +Along with the subdomains and the mesh domain markers are set upself. +The resulting mesh is saved into files for later use. +""" + +#!/usr/bin/python3 +import dolfin as df +import mshr +import numpy as np +import sympy as sym +import typing as tp +import functools as ft +import domainPatch as dp +import LDDsimulation as ldd + +# init sympy session +sym.init_printing() + +# ----------------------------------------------------------------------------# +# ------------------- MESH ---------------------------------------------------# +# ----------------------------------------------------------------------------# +mesh_resolution = 5 +# ----------------------------------------:-----------------------------------# +# ------------------- TIME ---------------------------------------------------# +# ----------------------------------------------------------------------------# +timestep_size = 0.003 +number_of_timesteps = 300 +# decide how many timesteps you want analysed. Analysed means, that we write +# out subsequent errors of the L-iteration within the timestep. +number_of_timesteps_to_analyse = 11 +starttime = 0 + +l_param_w = 80 +l_param_nw = 120 + +# global domain +subdomain0_vertices = [df.Point(0.0,0.0), # + df.Point(13.0,0.0),# + df.Point(13.0,8.0),# + df.Point(0.0,8.0)] + +interface12_vertices = [df.Point(0.0, 7.0), + df.Point(9.0, 7.0), + df.Point(10.5, 7.5), + df.Point(12.0, 7.0), + df.Point(13.0, 6.5)] +# subdomain1. +subdomain1_vertices = [interface12_vertices[0], + interface12_vertices[1], + interface12_vertices[2], + interface12_vertices[3], + interface12_vertices[4], # southern boundary, 12 interface + subdomain0_vertices[2], # eastern boundary, outer boundary + subdomain0_vertices[3]] # northern boundary, outer on_boundary + +# vertex coordinates of the outer boundaries. If it can not be specified as a +# polygon, use an entry per boundary polygon. This information is used for defining +# the Dirichlet boundary conditions. If a domain is completely internal, the +# dictionary entry should be 0: None +subdomain1_outer_boundary_verts = { + 0: [interface12_vertices[4], # + subdomain0_vertices[2], # eastern boundary, outer boundary + subdomain0_vertices[3], + interface12_vertices[0]] +} + + +# interface23 +interface23_vertices = [df.Point(0.0, 5.0), + df.Point(3.0, 5.0), + # df.Point(6.5, 4.5), + df.Point(6.5, 5.0), + df.Point(9.5, 5.0), + # df.Point(11.5, 3.5), + # df.Point(13.0, 3) + df.Point(11.5, 5.0), + df.Point(13.0, 5.0) + ] + +#subdomain1 +subdomain2_vertices = [interface23_vertices[0], + interface23_vertices[1], + interface23_vertices[2], + interface23_vertices[3], + interface23_vertices[4], + interface23_vertices[5], # southern boundary, 23 interface + subdomain1_vertices[4], # eastern boundary, outer boundary + subdomain1_vertices[3], + subdomain1_vertices[2], + subdomain1_vertices[1], + subdomain1_vertices[0] ] # northern boundary, 12 interface + +subdomain2_outer_boundary_verts = { + 0: [interface23_vertices[5], + subdomain1_vertices[4]], + 1: [subdomain1_vertices[0], + interface23_vertices[0]] +} + + + +interface32_vertices = [interface23_vertices[2], + interface23_vertices[1], + interface23_vertices[0]] + +interface34_vertices = [df.Point(4.0, 2.0), + df.Point(4.7, 3.0), + interface23_vertices[2]] +# interface36 +interface36_vertices = [df.Point(0.0, 2.0), + df.Point(4.0, 2.0)] + +subdomain3_vertices = [interface36_vertices[0], + interface36_vertices[1], + interface34_vertices[0], + interface34_vertices[1], + interface34_vertices[2] + interface32_vertices[0], + interface32_vertices[1], + interface32_vertices[2] + ] + +interface46_vertices = [df.Point(4.0, 2.0), + df.Point(9.0, 2.5)] + +interface46_vertices = [df.Point(9.0, 2.5), + df.Point(10.5, 2.0), + df.Point(13.0, 1.5)] + +# subdomain3 +subdomain3_vertices = [interface34_vertices[0], + interface34_vertices[1], + interface34_vertices[2], + interface34_vertices[3], + interface34_vertices[4], # southern boundary, 34 interface + subdomain2_vertices[5], # eastern boundary, outer boundary + subdomain2_vertices[4], + subdomain2_vertices[3], + subdomain2_vertices[2], + subdomain2_vertices[1], + subdomain2_vertices[0] ] # northern boundary, 23 interface + + + + +subdomain3_outer_boundary_verts = { + 0: [interface34_vertices[4], + subdomain2_vertices[5]], + 1: [subdomain2_vertices[0], + interface34_vertices[0]] +} + +# subdomain4 +subdomain4_vertices = [subdomain0_vertices[0], + subdomain0_vertices[1], # southern boundary, outer boundary + subdomain3_vertices[4],# eastern boundary, outer boundary + subdomain3_vertices[3], + subdomain3_vertices[2], + subdomain3_vertices[1], + subdomain3_vertices[0] ] # northern boundary, 34 interface + +subdomain4_outer_boundary_verts = { + 0: [subdomain4_vertices[6], + subdomain4_vertices[0], + subdomain4_vertices[1], + subdomain4_vertices[2]] +} + + +subdomain_def_points = [subdomain0_vertices,# + subdomain1_vertices,# + subdomain2_vertices,# + subdomain3_vertices,# + subdomain4_vertices + ] + + +# interface_vertices introduces a global numbering of interfaces. +interface_def_points = [interface12_vertices, interface23_vertices, interface34_vertices] +adjacent_subdomains = [[1,2], [2,3], [3,4]] + +# if a subdomain has no outer boundary write None instead, i.e. +# i: None +# if i is the index of the inner subdomain. +outer_boundary_def_points = { + # subdomain number + 1: subdomain1_outer_boundary_verts, + 2: subdomain2_outer_boundary_verts, + 3: subdomain3_outer_boundary_verts, + 4: subdomain4_outer_boundary_verts +} + +isRichards = { + 1: False, + 2: False, + 3: False, + 4: False + } + +# Dict of the form: { subdom_num : viscosity } +viscosity = { + 1: {'wetting' :1, + 'nonwetting': 1/50}, + 2: {'wetting' :1, + 'nonwetting': 1/50}, + 3: {'wetting' :1, + 'nonwetting': 1/50}, + 4: {'wetting' :1, + 'nonwetting': 1/50}, +} + +# Dict of the form: { subdom_num : density } +densities = { + 1: {'wetting': 997, + 'nonwetting': 1.225}, + 2: {'wetting': 997, + 'nonwetting': 1.225}, + 3: {'wetting': 997, + 'nonwetting': 1.225}, + 4: {'wetting': 997, + 'nonwetting': 1.225} +} + +gravity_acceleration = 9.81 +# porosities taken from +# https://www.geotechdata.info/parameter/soil-porosity.html +# Dict of the form: { subdom_num : porosity } +porosity = { + 1: 0.2, # Clayey gravels, clayey sandy gravels + 2: 0.22, # Silty gravels, silty sandy gravels + 3: 0.37, # Clayey sands + 4: 0.2 # Silty or sandy clay +} + +# subdom_num : subdomain L for L-scheme +L = { + 1: {'wetting' :0.3, + 'nonwetting': 0.25}, + 2: {'wetting' :0.3, + 'nonwetting': 0.25}, + 3: {'wetting' :0.3, + 'nonwetting': 0.25}, + 4: {'wetting' :0.3, + 'nonwetting': 0.25} +} + +# subdom_num : lambda parameter for the L-scheme +lambda_param = { + 1: {'wetting': l_param_w, + 'nonwetting': l_param_nw},# + 2: {'wetting': l_param_w, + 'nonwetting': l_param_nw},# + 3: {'wetting': l_param_w, + 'nonwetting': l_param_nw},# + 4: {'wetting': l_param_w, + 'nonwetting': l_param_nw},# +} + + +## relative permeabilty functions on subdomain 1 +def rel_perm1w(s): + # relative permeabilty wetting on subdomain1 + return s**2 + + +def rel_perm1nw(s): + # relative permeabilty nonwetting on subdomain1 + return (1-s)**2 + + +## relative permeabilty functions on subdomain 2 +def rel_perm2w(s): + # relative permeabilty wetting on subdomain2 + return s**3 + + +def rel_perm2nw(s): + # relative permeabilty nonwetting on subdosym.cos(0.8*t - (0.8*x + 1/7*y))main2 + return (1-s)**2 + + +_rel_perm1w = ft.partial(rel_perm1w) +_rel_perm1nw = ft.partial(rel_perm1nw) +_rel_perm2w = ft.partial(rel_perm2w) +_rel_perm2nw = ft.partial(rel_perm2nw) + +subdomain1_rel_perm = { + 'wetting': _rel_perm1w,# + 'nonwetting': _rel_perm1nw +} + +subdomain2_rel_perm = { + 'wetting': _rel_perm2w,# + 'nonwetting': _rel_perm2nw +} + +# _rel_perm3 = ft.partial(rel_perm2) +# subdomain3_rel_perm = subdomain2_rel_perm.copy() +# +# _rel_perm4 = ft.partial(rel_perm1) +# subdomain4_rel_perm = subdomain1_rel_perm.copy() + +# dictionary of relative permeabilties on all domains. +relative_permeability = { + 1: subdomain1_rel_perm, + 2: subdomain1_rel_perm, + 3: subdomain2_rel_perm, + 4: subdomain2_rel_perm +} + +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 1 +def rel_perm1w_prime(s): + # relative permeabilty on subdomain1 + return 2*s + +def rel_perm1nw_prime(s): + # relative permeabilty on subdomain1 + return 2*(1-s) + +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 1 +def rel_perm2w_prime(s): + # relative permeabilty on subdomain1 + return 3*s**2 + +def rel_perm2nw_prime(s): + # relative permeabilty on subdomain1 + return 2*(1-s) + +_rel_perm1w_prime = ft.partial(rel_perm1w_prime) +_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime) +_rel_perm2w_prime = ft.partial(rel_perm2w_prime) +_rel_perm2nw_prime = ft.partial(rel_perm2nw_prime) + +subdomain1_rel_perm_prime = { + 'wetting': _rel_perm1w_prime, + 'nonwetting': _rel_perm1nw_prime +} + + +subdomain2_rel_perm_prime = { + 'wetting': _rel_perm2w_prime, + 'nonwetting': _rel_perm2nw_prime +} + +# dictionary of relative permeabilties on all domains. +ka_prime = { + 1: subdomain1_rel_perm_prime, + 2: subdomain1_rel_perm_prime, + 3: subdomain2_rel_perm_prime, + 4: subdomain2_rel_perm_prime +} + + + +# S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where +# we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw +# this function needs to be monotonically decreasing in the capillary pressure pc. +# since in the richards case pc=-pw, this becomes as a function of pw a mono +# tonically INCREASING function like in our Richards-Richards paper. However +# since we unify the treatment in the code for Richards and two-phase, we need +# the same requierment +# for both cases, two-phase and Richards. +def saturation(pc, n_index, alpha): + # inverse capillary pressure-saturation-relationship + return df.conditional(pc > 0, 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)), 1) + +# S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where +# we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw +def saturation_sym(pc, n_index, alpha): + # inverse capillary pressure-saturation-relationship + #df.conditional(pc > 0, + return 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)) + + +# derivative of S-pc relationship with respect to pc. This is needed for the +# construction of a analytic solution. +def saturation_sym_prime(pc, n_index, alpha): + # inverse capillary pressure-saturation-relationship + return -(alpha*(n_index - 1)*(alpha*pc)**(n_index - 1)) / ( (1 + (alpha*pc)**n_index)**((2*n_index - 1)/n_index) ) + + +# note that the conditional definition of S-pc in the nonsymbolic part will be +# incorporated in the construction of the exact solution below. +S_pc_sym = { + 1: ft.partial(saturation_sym, n_index=3, alpha=0.001), + 2: ft.partial(saturation_sym, n_index=3, alpha=0.001), + 3: ft.partial(saturation_sym, n_index=6, alpha=0.001), + 4: ft.partial(saturation_sym, n_index=6, alpha=0.001) +} + +S_pc_sym_prime = { + 1: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), + 2: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), + 3: ft.partial(saturation_sym_prime, n_index=6, alpha=0.001), + 4: ft.partial(saturation_sym_prime, n_index=6, alpha=0.001) +} + +sat_pressure_relationship = { + 1: ft.partial(saturation, n_index=3, alpha=0.001), + 2: ft.partial(saturation, n_index=3, alpha=0.001), + 3: ft.partial(saturation, n_index=6, alpha=0.001), + 4: ft.partial(saturation, n_index=6, alpha=0.001) +} + + +############################################# +# Manufacture source expressions with sympy # +############################################# +x, y = sym.symbols('x[0], x[1]') # needed by UFL +t = sym.symbols('t', positive=True) + +p_e_sym = { + 1: {'wetting': 1.0 - (1.0 + t*t)*(10.0 + x*x + (y-5.0)*(y-5.0)), + 'nonwetting': - 2 - t*(1 + (y-5.0) + x**2)**2 -sym.sqrt(2+t**2)*(1 + (y-5.0)) }, + 2: {'wetting': 1.0 - (1.0 + t*t)*(10.0 + x*x + (y-5.0)*(y-5.0)), + 'nonwetting': - 2 - t*(1 + (y-5.0) + x**2)**2 -sym.sqrt(2+t**2)*(1 + (y-5.0))}, + 3: {'wetting': 1.0 - (1.0 + t*t)*(10.0 + x*x + (y-5.0)*(y-5.0)*3*sym.sin(-2*t+2*x)*sym.sin(1/2*y-1.2*t)), + 'nonwetting': - 2 - t*(1 + x**2)**2 -sym.sqrt(2+t**2)}, + 4: {'wetting': 1.0 - (1.0 + t*t)*(10.0 + x*x + (y-5.0)*(y-5.0)*3*sym.sin(-2*t+2*x)*sym.sin(1/2*y-1.2*t)), + 'nonwetting': - 2 - t*(1 + x**2)**2 -sym.sqrt(2+t**2)} +} + +pc_e_sym = { + 1: p_e_sym[1]['nonwetting'] - p_e_sym[1]['wetting'], + 2: p_e_sym[2]['nonwetting'] - p_e_sym[2]['wetting'], + 3: p_e_sym[3]['nonwetting'] - p_e_sym[3]['wetting'], + 4: p_e_sym[4]['nonwetting'] - p_e_sym[4]['wetting'] +} + +# turn above symbolic code into exact solution for dolphin and +# construct the rhs that matches the above exact solution. +dtS = dict() +div_flux = dict() +source_expression = dict() +exact_solution = dict() +initial_condition = dict() +for subdomain, isR in isRichards.items(): + dtS.update({subdomain: dict()}) + div_flux.update({subdomain: dict()}) + source_expression.update({subdomain: dict()}) + exact_solution.update({subdomain: dict()}) + initial_condition.update({subdomain: dict()}) + if isR: + subdomain_has_phases = ["wetting"] + else: + subdomain_has_phases = ["wetting", "nonwetting"] + + # conditional for S_pc_prime + pc = pc_e_sym[subdomain] + dtpc = sym.diff(pc, t, 1) + dxpc = sym.diff(pc, x, 1) + dypc = sym.diff(pc, y, 1) + S = sym.Piecewise((S_pc_sym[subdomain](pc), pc > 0), (1, True)) + dS = sym.Piecewise((S_pc_sym_prime[subdomain](pc), pc > 0), (0, True)) + for phase in subdomain_has_phases: + # Turn above symbolic expression for exact solution into c code + exact_solution[subdomain].update( + {phase: sym.printing.ccode(p_e_sym[subdomain][phase])} + ) + # save the c code for initial conditions + initial_condition[subdomain].update( + {phase: sym.printing.ccode(p_e_sym[subdomain][phase].subs(t, 0))} + ) + if phase == "nonwetting": + dS = -dS + dtS[subdomain].update( + {phase: porosity[subdomain]*dS*dtpc} + ) + pa = p_e_sym[subdomain][phase] + dxpa = sym.diff(pa, x, 1) + dxdxpa = sym.diff(pa, x, 2) + dypa = sym.diff(pa, y, 1) + dydypa = sym.diff(pa, y, 2) + mu = viscosity[subdomain][phase] + ka = relative_permeability[subdomain][phase] + dka = ka_prime[subdomain][phase] + rho = densities[subdomain][phase] + g = gravity_acceleration + + if phase == "nonwetting": + # x part of div(flux) for nonwetting + dxdxflux = -1/mu*dka(1-S)*dS*dxpc*dxpa + 1/mu*dxdxpa*ka(1-S) + # y part of div(flux) for nonwetting + dydyflux = -1/mu*dka(1-S)*dS*dypc*(dypa - rho*g) \ + + 1/mu*dydypa*ka(1-S) + else: + # x part of div(flux) for wetting + dxdxflux = 1/mu*dka(S)*dS*dxpc*dxpa + 1/mu*dxdxpa*ka(S) + # y part of div(flux) for wetting + dydyflux = 1/mu*dka(S)*dS*dypc*(dypa - rho*g) + 1/mu*dydypa*ka(S) + div_flux[subdomain].update({phase: dxdxflux + dydyflux}) + contructed_rhs = dtS[subdomain][phase] - div_flux[subdomain][phase] + source_expression[subdomain].update( + {phase: sym.printing.ccode(contructed_rhs)} + ) + # print(f"source_expression[{subdomain}][{phase}] =", source_expression[subdomain][phase]) + +# Dictionary of dirichlet boundary conditions. +dirichletBC = dict() +# similarly to the outer boundary dictionary, if a patch has no outer boundary +# None should be written instead of an expression. +# This is a bit of a brainfuck: +# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind. +# Since a domain patch can have several disjoint outer boundary parts, the +# expressions need to get an enumaration index which starts at 0. +# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of +# subdomain ind and boundary part j. +# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting'] +# return the actual expression needed for the dirichlet condition for both +# phases if present. + +# subdomain index: {outer boudary part index: {phase: expression}} +for subdomain in isRichards.keys(): + # if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None + if outer_boundary_def_points[subdomain] is None: + dirichletBC.update({subdomain: None}) + else: + dirichletBC.update({subdomain: dict()}) + # set the dirichlet conditions to be the same code as exact solution on + # the subdomain. + for outer_boundary_ind in outer_boundary_def_points[subdomain].keys(): + dirichletBC[subdomain].update( + {outer_boundary_ind: exact_solution[subdomain]} + ) + +write_to_file = { + 'meshes_and_markers': True, + 'L_iterations': True +} + +# initialise LDD simulation class +simulation = ldd.LDDsimulation(tol=1E-14, debug=True, LDDsolver_tol=1E-7) +simulation.set_parameters(output_dir="./output/", + subdomain_def_points=subdomain_def_points, + isRichards=isRichards, + interface_def_points=interface_def_points, + outer_boundary_def_points=outer_boundary_def_points, + adjacent_subdomains=adjacent_subdomains, + mesh_resolution=mesh_resolution, + viscosity=viscosity, + porosity=porosity, + L=L, + lambda_param=lambda_param, + relative_permeability=relative_permeability, + saturation=sat_pressure_relationship, + starttime=starttime, + number_of_timesteps=number_of_timesteps, + number_of_timesteps_to_analyse=number_of_timesteps_to_analyse, + timestep_size=timestep_size, + sources=source_expression, + initial_conditions=initial_condition, + dirichletBC_expression_strings=dirichletBC, + exact_solution=exact_solution, + densities=densities, + include_gravity=True, + write2file=write_to_file, + ) + +simulation.initialise() +# print(simulation.__dict__) +simulation.run() +# simulation.LDDsolver(time=0, debug=True, analyse_timestep=True) +# df.info(parameters, True) diff --git a/TP-TP-layered-soil-case/TP-TP-layered_soil.py b/TP-TP-layered-soil-case/TP-TP-layered_soil.py index 7ecf9a7..2cfac5c 100755 --- a/TP-TP-layered-soil-case/TP-TP-layered_soil.py +++ b/TP-TP-layered-soil-case/TP-TP-layered_soil.py @@ -23,19 +23,19 @@ sym.init_printing() # ----------------------------------------------------------------------------# # ------------------- MESH ---------------------------------------------------# # ----------------------------------------------------------------------------# -mesh_resolution = 4 +mesh_resolution = 20 # ----------------------------------------:-------------------------------------# # ------------------- TIME ---------------------------------------------------# # ----------------------------------------------------------------------------# -timestep_size = 0.005 -number_of_timesteps = 30 +timestep_size = 0.003 +number_of_timesteps = 300 # decide how many timesteps you want analysed. Analysed means, that we write # out subsequent errors of the L-iteration within the timestep. number_of_timesteps_to_analyse = 11 starttime = 0 -l_param_w = 40 -l_param_nw = l_param_w +l_param_w = 80 +l_param_nw = 120 # global domain subdomain0_vertices = [df.Point(0.0,0.0), # @@ -213,13 +213,13 @@ porosity = { # subdom_num : subdomain L for L-scheme L = { - 1: {'wetting' :0.25, + 1: {'wetting' :0.3, 'nonwetting': 0.25}, - 2: {'wetting' :0.25, + 2: {'wetting' :0.3, 'nonwetting': 0.25}, - 3: {'wetting' :0.25, + 3: {'wetting' :0.3, 'nonwetting': 0.25}, - 4: {'wetting' :0.25, + 4: {'wetting' :0.3, 'nonwetting': 0.25} } @@ -492,13 +492,11 @@ dirichletBC = dict() # subdomain index: {outer boudary part index: {phase: expression}} for subdomain in isRichards.keys(): + # if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None if outer_boundary_def_points[subdomain] is None: dirichletBC.update({subdomain: None}) else: dirichletBC.update({subdomain: dict()}) - # if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None - - if outer_boundary_def_points[subdomain] is not None: # set the dirichlet conditions to be the same code as exact solution on # the subdomain. for outer_boundary_ind in outer_boundary_def_points[subdomain].keys(): @@ -512,7 +510,7 @@ write_to_file = { } # initialise LDD simulation class -simulation = ldd.LDDsimulation(tol=1E-14, debug=False, LDDsolver_tol=1E-9) +simulation = ldd.LDDsimulation(tol=1E-14, debug=True, LDDsolver_tol=1E-7) simulation.set_parameters(output_dir="./output/", subdomain_def_points=subdomain_def_points, isRichards=isRichards, -- GitLab