diff --git a/LDDsimulation/domainSubstructuring.py b/LDDsimulation/domainSubstructuring.py
index 9a43ef4b166540a77782659d46b181dc0df786a6..6b0578dd335918876009580d546240d98ff4dec9 100644
--- a/LDDsimulation/domainSubstructuring.py
+++ b/LDDsimulation/domainSubstructuring.py
@@ -35,6 +35,67 @@ class domainSubstructuring(object):
         raise(NotImplementedError())
 
 
+class globalDomain(domainSubstructuring):
+    """layered soil substructuring with inner patch."""
+
+    def __init__(self):
+        """Layered soil case with inner patch."""
+        super().__init__()
+        hlp.print_once("\n Layered Soil with inner Patch:\n")
+        # global domain
+        self.__subdomain0_vertices = [
+            df.Point(-1.0, -1.0),
+            df.Point(1.0, -1.0),
+            df.Point(1.0, 1.0),
+            df.Point(-1.0, 1.0)
+            ]
+
+        self.__interface_def_points()
+        self.__adjacent_subdomains()
+        self.__subdomain_def_points()
+        self.__outer_boundary_def_points()
+
+    def __interface_def_points(self):
+        """Set self._interface_def_points."""
+
+        # interface_vertices introduces a global numbering of interfaces.
+        self.interface_def_points = None
+
+    def __adjacent_subdomains(self):
+        """Set self._adjacent_subdomains."""
+        self.adjacent_subdomains = None
+
+    def __subdomain_def_points(self):
+        """Set self._subdomain_def_points."""
+
+        self.subdomain_def_points = [
+            self.__subdomain0_vertices
+            ]
+
+    def __outer_boundary_def_points(self):
+        """Set self._outer_boundary_def_points."""
+        # vertex coordinates of the outer boundaries. If it can not be
+        # specified as a polygon, use an entry per boundary polygon.
+        # This information is used for defining the Dirichlet boundary
+        # conditions. If a domain is completely internal, the
+        # dictionary entry should be 0: None
+        self.__subdomain0_outer_boundary_verts = {
+            0: [self.__subdomain0_vertices[0],
+                self.__subdomain0_vertices[1],
+                self.__subdomain0_vertices[2],
+                self.__subdomain0_vertices[3],
+                self.__subdomain0_vertices[0]]
+        }
+
+
+        # if a subdomain has no outer boundary write None instead, i.e.
+        # i: None
+        # if i is the index of the inner subdomain.
+        self.outer_boundary_def_points = {
+            # subdomain number
+            0: self.__subdomain0_outer_boundary_verts
+        }
+
 class twoSoilLayers(domainSubstructuring):
     """layered soil substructuring with inner patch."""
 
diff --git a/Two-phase-Two-phase/one-patch/TP-one-patch/TP-one-patch-alterantive.py b/Two-phase-Two-phase/one-patch/Archive/TP-one-patch-alterantive.py
similarity index 100%
rename from Two-phase-Two-phase/one-patch/TP-one-patch/TP-one-patch-alterantive.py
rename to Two-phase-Two-phase/one-patch/Archive/TP-one-patch-alterantive.py
diff --git a/Two-phase-Two-phase/one-patch/TP-one-patch/TP-one-patch-linear-koefficients.py b/Two-phase-Two-phase/one-patch/Archive/TP-one-patch-linear-koefficients.py
similarity index 100%
rename from Two-phase-Two-phase/one-patch/TP-one-patch/TP-one-patch-linear-koefficients.py
rename to Two-phase-Two-phase/one-patch/Archive/TP-one-patch-linear-koefficients.py
diff --git a/Two-phase-Two-phase/one-patch/TP-one-patch/mesh_study_for_fixed_timestep/R-one-patch-mesh-study-fixed-timestep.py b/Two-phase-Two-phase/one-patch/Archive/TP-one-patch-new-gravity-test-realistic.py
old mode 100755
new mode 100644
similarity index 79%
rename from Two-phase-Two-phase/one-patch/TP-one-patch/mesh_study_for_fixed_timestep/R-one-patch-mesh-study-fixed-timestep.py
rename to Two-phase-Two-phase/one-patch/Archive/TP-one-patch-new-gravity-test-realistic.py
index 14677c93cdbe98edb0217fbb0021084a48e7e232..a778552e24323c8364dcc12ba41e0c34d5367140
--- a/Two-phase-Two-phase/one-patch/TP-one-patch/mesh_study_for_fixed_timestep/R-one-patch-mesh-study-fixed-timestep.py
+++ b/Two-phase-Two-phase/one-patch/Archive/TP-one-patch-new-gravity-test-realistic.py
@@ -19,56 +19,42 @@ datestr = date.strftime("%Y-%m-%d")
 # init sympy session
 sym.init_printing()
 
-use_case = "R-one-patch-mesh-study-fixed-timestep-new-errornorm"
-# solver_tol = 5E-9
-max_iter_num = 1000
+use_case = "TP-one-patch-new-gravity-test"
+# solver_tol = 6E-7
+max_iter_num = 300
 FEM_Lagrange_degree = 1
-mesh_study = True
-# resolutions = {128: 1e-8} #[1,2,3,4,5,10,20,40,75,100]
+mesh_study = False
 resolutions = {
-                1: 1e-8,
-                2: 1e-8,
-                4: 1e-8,
-                8: 1e-8,
-                16: 1e-8,
-                32: 1e-8,
-                64: 1e-8,
-                # 128: 1e-8,
-                # 256: 1e-8,
-                # 512: 1e-8,
+                # 1: 1e-6,
+                # 2: 1e-6,
+                # 4: 1e-6,
+                # 8: 1e-6,
+                16: 1e-6,
+                # 32: 1e-6,
+                # 64: 1e-6,
+                # 128: 1e-6,
+                # 256: 1e-6,
                 }
 
 ############ GRID #######################
 # mesh_resolution = 20
-timestep_size = 0.012
-number_of_timesteps = 1
+timestep_size = 0.001
+number_of_timesteps = 100
 plot_timestep_every = 1
 # decide how many timesteps you want analysed. Analysed means, that we write out
 # subsequent errors of the L-iteration within the timestep.
-number_of_timesteps_to_analyse = 1
+number_of_timesteps_to_analyse = 5
 starttimes = [0.0]
-# starttimes = [0.0, 0.05]
-
-# starttimes = {
-#     1: 0.0
-#     2: 0.05
-#     4: 0.1
-#     8: 0.2
-#     16: 0.4
-#     32: 0.7
-#     64: 1.0
-#     128: 1.3
-# }
 
-Lw = 0.025 #/timestep_size
+Lw = 40 #/timestep_size
 Lnw=Lw
 
 lambda_w = 0
 lambda_nw = 0
 
-include_gravity = False
+include_gravity = True
 debugflag = True
-analyse_condition = False
+analyse_condition = True
 
 if mesh_study:
     output_string = "./output/{}-{}_timesteps{}_P{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree)
@@ -77,6 +63,7 @@ else:
         solver_tol = tol
     output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol)
 
+
 # toggle what should be written to files
 if mesh_study:
     write_to_file = {
@@ -99,6 +86,7 @@ else:
         'subsequent_errors': True
     }
 
+
 ##### Domain and Interface ####
 # global simulation domain domain
 sub_domain0_vertices = [df.Point(-1.0, -1.0),  #
@@ -136,24 +124,24 @@ outer_boundary_def_points = {
 # interface i (i.e. given by interface_def_points[i]).
 adjacent_subdomains = None
 isRichards = {
-    0: True, #
+    0: False, #
     }
 
 viscosity = {#
 # subdom_num : viscosity
     0 : {'wetting' :1,
-         'nonwetting': 1}, #
+         'nonwetting': 1/50}, #
 }
 
 porosity = {#
 # subdom_num : porosity
-    0: 1,#
+    0: 0.22,#
 }
 
 # Dict of the form: { subdom_num : density }
 densities = {
-    0: {'wetting': 1,  #997,
-        'nonwetting': 1}, #1225}
+    0: {'wetting': 997,
+        'nonwetting': 1.225}
 }
 
 gravity_acceleration = 9.81
@@ -271,64 +259,64 @@ sat_pressure_relationship = {
 x, y = sym.symbols('x[0], x[1]')  # needed by UFL
 t = sym.symbols('t', positive=True)
 
-epsilon_x_inner = 0.7
-epsilon_x_outer = 0.99
-epsilon_y_inner = epsilon_x_inner
-epsilon_y_outer = epsilon_x_outer
-
-def mollifier(x, epsilon):
-    """ one d mollifier """
-    out_expr = sym.exp(-1/(1-(x/epsilon)**2) + 1)
-    return out_expr
-
-mollifier_handle = ft.partial(mollifier, epsilon=epsilon_x_inner)
-
-pw_sym_x = sym.Piecewise(
-    (mollifier_handle(x), x**2 < epsilon_x_outer**2),
-    (0, True)
-)
-pw_sym_y = sym.Piecewise(
-    (mollifier_handle(y), y**2 < epsilon_y_outer**2),
-    (0, True)
-)
-
-def mollifier2d(x, y, epsilon):
-    """ one d mollifier """
-    out_expr = sym.exp(-1/(1-(x**2 + y**2)/epsilon**2) + 1)
-    return out_expr
-
-mollifier2d_handle = ft.partial(mollifier2d, epsilon=epsilon_x_outer)
-
-pw_sym2d_x = sym.Piecewise(
-    (mollifier2d_handle(x, y), x**2 + y**2 < epsilon_x_outer**2),
-    (0, True)
-)
-
-zero_on_epsilon_shrinking_of_subdomain = sym.Piecewise(
-    (mollifier_handle(sym.sqrt(x**2 + y**2)+2*epsilon_x_inner), ((-2*epsilon_x_inner<sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<-epsilon_x_inner))),
-    (0, ((-epsilon_x_inner<=sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<=epsilon_x_inner))),
-    (mollifier_handle(sym.sqrt(x**2 + y**2)-2*epsilon_x_inner), ((epsilon_x_inner<sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<2*epsilon_x_inner))),
-    (1, True),
-)
-
-zero_on_epsilon_shrinking_of_subdomain_x = sym.Piecewise(
-    (mollifier_handle(x+2*epsilon_x_inner), ((-2*epsilon_x_inner<x) & (x<-epsilon_x_inner))),
-    (0, ((-epsilon_x_inner<=x) & (x<=epsilon_x_inner))),
-    (mollifier_handle(x-2*epsilon_x_inner), ((epsilon_x_inner<x) & (x<2*epsilon_x_inner))),
-    (1, True),
-)
-
-zero_on_epsilon_shrinking_of_subdomain_y = sym.Piecewise(
-    (1, y<=-2*epsilon_x_inner),
-    (mollifier_handle(y+2*epsilon_x_inner), ((-2*epsilon_x_inner<y) & (y<-epsilon_x_inner))),
-    (0, ((-epsilon_x_inner<=y) & (y<=epsilon_x_inner))),
-    (mollifier_handle(y-2*epsilon_x_inner), ((epsilon_x_inner<y) & (y<2*epsilon_x_inner))),
-    (1, True),
-)
-
-zero_on_shrinking = zero_on_epsilon_shrinking_of_subdomain #zero_on_epsilon_shrinking_of_subdomain_x + zero_on_epsilon_shrinking_of_subdomain_y
-gaussian = pw_sym2d_x# pw_sym_y*pw_sym_x
-cutoff = gaussian/(gaussian + zero_on_shrinking)
+# epsilon_x_inner = 0.7
+# epsilon_x_outer = 0.99
+# epsilon_y_inner = epsilon_x_inner
+# epsilon_y_outer = epsilon_x_outer
+#
+# def mollifier(x, epsilon):
+#     """ one d mollifier """
+#     out_expr = sym.exp(-1/(1-(x/epsilon)**2) + 1)
+#     return out_expr
+#
+# mollifier_handle = ft.partial(mollifier, epsilon=epsilon_x_inner)
+#
+# pw_sym_x = sym.Piecewise(
+#     (mollifier_handle(x), x**2 < epsilon_x_outer**2),
+#     (0, True)
+# )
+# pw_sym_y = sym.Piecewise(
+#     (mollifier_handle(y), y**2 < epsilon_y_outer**2),
+#     (0, True)
+# )
+#
+# def mollifier2d(x, y, epsilon):
+#     """ one d mollifier """
+#     out_expr = sym.exp(-1/(1-(x**2 + y**2)/epsilon**2) + 1)
+#     return out_expr
+#
+# mollifier2d_handle = ft.partial(mollifier2d, epsilon=epsilon_x_outer)
+#
+# pw_sym2d_x = sym.Piecewise(
+#     (mollifier2d_handle(x, y), x**2 + y**2 < epsilon_x_outer**2),
+#     (0, True)
+# )
+#
+# zero_on_epsilon_shrinking_of_subdomain = sym.Piecewise(
+#     (mollifier_handle(sym.sqrt(x**2 + y**2)+2*epsilon_x_inner), ((-2*epsilon_x_inner<sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<-epsilon_x_inner))),
+#     (0, ((-epsilon_x_inner<=sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<=epsilon_x_inner))),
+#     (mollifier_handle(sym.sqrt(x**2 + y**2)-2*epsilon_x_inner), ((epsilon_x_inner<sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<2*epsilon_x_inner))),
+#     (1, True),
+# )
+#
+# zero_on_epsilon_shrinking_of_subdomain_x = sym.Piecewise(
+#     (mollifier_handle(x+2*epsilon_x_inner), ((-2*epsilon_x_inner<x) & (x<-epsilon_x_inner))),
+#     (0, ((-epsilon_x_inner<=x) & (x<=epsilon_x_inner))),
+#     (mollifier_handle(x-2*epsilon_x_inner), ((epsilon_x_inner<x) & (x<2*epsilon_x_inner))),
+#     (1, True),
+# )
+#
+# zero_on_epsilon_shrinking_of_subdomain_y = sym.Piecewise(
+#     (1, y<=-2*epsilon_x_inner),
+#     (mollifier_handle(y+2*epsilon_x_inner), ((-2*epsilon_x_inner<y) & (y<-epsilon_x_inner))),
+#     (0, ((-epsilon_x_inner<=y) & (y<=epsilon_x_inner))),
+#     (mollifier_handle(y-2*epsilon_x_inner), ((epsilon_x_inner<y) & (y<2*epsilon_x_inner))),
+#     (1, True),
+# )
+#
+# zero_on_shrinking = zero_on_epsilon_shrinking_of_subdomain #zero_on_epsilon_shrinking_of_subdomain_x + zero_on_epsilon_shrinking_of_subdomain_y
+# gaussian = pw_sym2d_x# pw_sym_y*pw_sym_x
+# cutoff = gaussian/(gaussian + zero_on_shrinking)
 
 # # construction of differentiable characteristic function.
 # def smooth_characteristic_func_on_epsilon_shrinking_of_subdomain0(x, y, epsilon_x_inner, epsilon_y_inner, epsilon_x_outer, epsilon_y_outer):
@@ -349,10 +337,29 @@ cutoff = gaussian/(gaussian + zero_on_shrinking)
 #     sym.Piecewise((0, is_inside))
 
 p_e_sym = {
-    0: {'wetting': (-7 - (1+t*t)*(1 + x*x + y*y)),  #*cutoff,
+    0: {'wetting': (-6 - (1+t*t)*(1 + x*x + y*y)),  #*cutoff,
         'nonwetting': (-1 -t*(1.1+y + x**2))},  #*cutoff},
 }
 
+# p_e_sym = {
+#     0: {'wetting': -(sym.cos(2*t-x - 2*y)*sym.sin(3*(1+y)/2*sym.pi)*sym.sin(5*(1+x)/2*sym.pi))**2,
+#         'nonwetting': -6*(sym.cos(t-x -y)*sym.sin(3*(1+y)/2*sym.pi)*sym.sin(5*(1+x)/2*sym.pi))**2},
+# }
+
+
+print(f"\n\n\nsymbolic type is {type(p_e_sym[0]['wetting'])}\n\n\n")
+# # pw_sym_x*pw_sym_y
+# p_e_sym = {
+#     0: {'wetting': -3*pw_sym2d_x + 0*t,
+#         'nonwetting': -1*pw_sym_x*pw_sym_y+ 0*t},
+# }
+
+# p_e_sym = {
+#     0: {'wetting': -3*cutoff + 0*t,
+#         'nonwetting': -1*zero_on_shrinking+ 0*t},
+# }
+
+
 pc_e_sym = dict()
 for subdomain, isR in isRichards.items():
     if isR:
@@ -361,7 +368,6 @@ for subdomain, isR in isRichards.items():
         pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting']
                                         - p_e_sym[subdomain]['wetting']})
 
-
 symbols = {"x": x,
            "y": y,
            "t": t}
@@ -415,11 +421,11 @@ for subdomain in isRichards.keys():
                 )
 
 
-# def saturation(pressure, subdomain_index):
-#     # inverse capillary pressure-saturation-relationship
-#     return df.conditional(pressure < 0, 1/((1 - pressure)**(1/(subdomain_index + 1))), 1)
-#
-# sa
+
+f = open('TP-one-patch-new-gravity-test.py', 'r')
+print(f.read())
+f.close()
+
 for starttime in starttimes:
     for mesh_resolution, solver_tol in resolutions.items():
         # initialise LDD simulation class
diff --git a/Two-phase-Two-phase/one-patch/TP-one-patch/mesh_study/R-one-patch-mesh-study.py b/Two-phase-Two-phase/one-patch/Archive/TP-one-patch-new-gravity-test.py
similarity index 80%
rename from Two-phase-Two-phase/one-patch/TP-one-patch/mesh_study/R-one-patch-mesh-study.py
rename to Two-phase-Two-phase/one-patch/Archive/TP-one-patch-new-gravity-test.py
index ff81ca563e67101e3b0f2b6804c3e2717eaf2fda..f3408bdad19c07b4592d7fc99c7b3f8a82410537 100755
--- a/Two-phase-Two-phase/one-patch/TP-one-patch/mesh_study/R-one-patch-mesh-study.py
+++ b/Two-phase-Two-phase/one-patch/Archive/TP-one-patch-new-gravity-test.py
@@ -19,56 +19,42 @@ datestr = date.strftime("%Y-%m-%d")
 # init sympy session
 sym.init_printing()
 
-use_case = "R-one-patch-mesh-study"
-# solver_tol = 5E-9
-max_iter_num = 1000
+use_case = "TP-one-patch-new-gravity-test"
+# solver_tol = 6E-7
+max_iter_num = 300
 FEM_Lagrange_degree = 1
-mesh_study = True
-# resolutions = {128: 1e-7} #[1,2,3,4,5,10,20,40,75,100]
+mesh_study = False
 resolutions = {
-                # 1: 1e-7,
-                2: 1e-7,
-                4: 1e-7,
-                8: 1e-7,
-                16: 1e-7,
-                32: 1e-7,
-                64: 1e-7,
-                128: 1e-7,
-                256: 1e-7,
-                512: 1e-7,
+                # 1: 1e-6,
+                # 2: 1e-6,
+                # 4: 1e-6,
+                # 8: 1e-6,
+                16: 2e-6,
+                # 32: 1e-6,
+                # 64: 1e-6,
+                # 128: 1e-6,
+                # 256: 1e-6,
                 }
 
 ############ GRID #######################
 # mesh_resolution = 20
-timestep_size = 0.01
-number_of_timesteps = 70
+timestep_size = 0.001
+number_of_timesteps = 100
 plot_timestep_every = 1
 # decide how many timesteps you want analysed. Analysed means, that we write out
 # subsequent errors of the L-iteration within the timestep.
 number_of_timesteps_to_analyse = 5
-starttimes = [0.0,0.25,0.5]
-# starttimes = [0.0, 0.05]
-
-# starttimes = {
-#     1: 0.0
-#     2: 0.05
-#     4: 0.1
-#     8: 0.2
-#     16: 0.4
-#     32: 0.7
-#     64: 1.0
-#     128: 1.3
-# }
+starttimes = [0.0]
 
-Lw = 0.025 #/timestep_size
+Lw = 0.04 #/timestep_size
 Lnw=Lw
 
 lambda_w = 0
 lambda_nw = 0
 
 include_gravity = True
-debugflag = False
-analyse_condition = False
+debugflag = True
+analyse_condition = True
 
 if mesh_study:
     output_string = "./output/{}-{}_timesteps{}_P{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree)
@@ -77,6 +63,7 @@ else:
         solver_tol = tol
     output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol)
 
+
 # toggle what should be written to files
 if mesh_study:
     write_to_file = {
@@ -99,6 +86,7 @@ else:
         'subsequent_errors': True
     }
 
+
 ##### Domain and Interface ####
 # global simulation domain domain
 sub_domain0_vertices = [df.Point(-1.0, -1.0),  #
@@ -136,7 +124,7 @@ outer_boundary_def_points = {
 # interface i (i.e. given by interface_def_points[i]).
 adjacent_subdomains = None
 isRichards = {
-    0: True, #
+    0: False, #
     }
 
 viscosity = {#
@@ -152,11 +140,11 @@ porosity = {#
 
 # Dict of the form: { subdom_num : density }
 densities = {
-    0: {'wetting': 1,  #997,
-        'nonwetting': 1}, #1225}
+    0: {'wetting': 1, #997,
+        'nonwetting': 1} #1.225}
 }
 
-gravity_acceleration = 9.81
+gravity_acceleration = 1
 
 L = {#
 # subdom_num : subdomain L for L-scheme
@@ -271,64 +259,64 @@ sat_pressure_relationship = {
 x, y = sym.symbols('x[0], x[1]')  # needed by UFL
 t = sym.symbols('t', positive=True)
 
-epsilon_x_inner = 0.7
-epsilon_x_outer = 0.99
-epsilon_y_inner = epsilon_x_inner
-epsilon_y_outer = epsilon_x_outer
-
-def mollifier(x, epsilon):
-    """ one d mollifier """
-    out_expr = sym.exp(-1/(1-(x/epsilon)**2) + 1)
-    return out_expr
-
-mollifier_handle = ft.partial(mollifier, epsilon=epsilon_x_inner)
-
-pw_sym_x = sym.Piecewise(
-    (mollifier_handle(x), x**2 < epsilon_x_outer**2),
-    (0, True)
-)
-pw_sym_y = sym.Piecewise(
-    (mollifier_handle(y), y**2 < epsilon_y_outer**2),
-    (0, True)
-)
-
-def mollifier2d(x, y, epsilon):
-    """ one d mollifier """
-    out_expr = sym.exp(-1/(1-(x**2 + y**2)/epsilon**2) + 1)
-    return out_expr
-
-mollifier2d_handle = ft.partial(mollifier2d, epsilon=epsilon_x_outer)
-
-pw_sym2d_x = sym.Piecewise(
-    (mollifier2d_handle(x, y), x**2 + y**2 < epsilon_x_outer**2),
-    (0, True)
-)
-
-zero_on_epsilon_shrinking_of_subdomain = sym.Piecewise(
-    (mollifier_handle(sym.sqrt(x**2 + y**2)+2*epsilon_x_inner), ((-2*epsilon_x_inner<sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<-epsilon_x_inner))),
-    (0, ((-epsilon_x_inner<=sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<=epsilon_x_inner))),
-    (mollifier_handle(sym.sqrt(x**2 + y**2)-2*epsilon_x_inner), ((epsilon_x_inner<sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<2*epsilon_x_inner))),
-    (1, True),
-)
-
-zero_on_epsilon_shrinking_of_subdomain_x = sym.Piecewise(
-    (mollifier_handle(x+2*epsilon_x_inner), ((-2*epsilon_x_inner<x) & (x<-epsilon_x_inner))),
-    (0, ((-epsilon_x_inner<=x) & (x<=epsilon_x_inner))),
-    (mollifier_handle(x-2*epsilon_x_inner), ((epsilon_x_inner<x) & (x<2*epsilon_x_inner))),
-    (1, True),
-)
-
-zero_on_epsilon_shrinking_of_subdomain_y = sym.Piecewise(
-    (1, y<=-2*epsilon_x_inner),
-    (mollifier_handle(y+2*epsilon_x_inner), ((-2*epsilon_x_inner<y) & (y<-epsilon_x_inner))),
-    (0, ((-epsilon_x_inner<=y) & (y<=epsilon_x_inner))),
-    (mollifier_handle(y-2*epsilon_x_inner), ((epsilon_x_inner<y) & (y<2*epsilon_x_inner))),
-    (1, True),
-)
-
-zero_on_shrinking = zero_on_epsilon_shrinking_of_subdomain #zero_on_epsilon_shrinking_of_subdomain_x + zero_on_epsilon_shrinking_of_subdomain_y
-gaussian = pw_sym2d_x# pw_sym_y*pw_sym_x
-cutoff = gaussian/(gaussian + zero_on_shrinking)
+# epsilon_x_inner = 0.7
+# epsilon_x_outer = 0.99
+# epsilon_y_inner = epsilon_x_inner
+# epsilon_y_outer = epsilon_x_outer
+#
+# def mollifier(x, epsilon):
+#     """ one d mollifier """
+#     out_expr = sym.exp(-1/(1-(x/epsilon)**2) + 1)
+#     return out_expr
+#
+# mollifier_handle = ft.partial(mollifier, epsilon=epsilon_x_inner)
+#
+# pw_sym_x = sym.Piecewise(
+#     (mollifier_handle(x), x**2 < epsilon_x_outer**2),
+#     (0, True)
+# )
+# pw_sym_y = sym.Piecewise(
+#     (mollifier_handle(y), y**2 < epsilon_y_outer**2),
+#     (0, True)
+# )
+#
+# def mollifier2d(x, y, epsilon):
+#     """ one d mollifier """
+#     out_expr = sym.exp(-1/(1-(x**2 + y**2)/epsilon**2) + 1)
+#     return out_expr
+#
+# mollifier2d_handle = ft.partial(mollifier2d, epsilon=epsilon_x_outer)
+#
+# pw_sym2d_x = sym.Piecewise(
+#     (mollifier2d_handle(x, y), x**2 + y**2 < epsilon_x_outer**2),
+#     (0, True)
+# )
+#
+# zero_on_epsilon_shrinking_of_subdomain = sym.Piecewise(
+#     (mollifier_handle(sym.sqrt(x**2 + y**2)+2*epsilon_x_inner), ((-2*epsilon_x_inner<sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<-epsilon_x_inner))),
+#     (0, ((-epsilon_x_inner<=sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<=epsilon_x_inner))),
+#     (mollifier_handle(sym.sqrt(x**2 + y**2)-2*epsilon_x_inner), ((epsilon_x_inner<sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<2*epsilon_x_inner))),
+#     (1, True),
+# )
+#
+# zero_on_epsilon_shrinking_of_subdomain_x = sym.Piecewise(
+#     (mollifier_handle(x+2*epsilon_x_inner), ((-2*epsilon_x_inner<x) & (x<-epsilon_x_inner))),
+#     (0, ((-epsilon_x_inner<=x) & (x<=epsilon_x_inner))),
+#     (mollifier_handle(x-2*epsilon_x_inner), ((epsilon_x_inner<x) & (x<2*epsilon_x_inner))),
+#     (1, True),
+# )
+#
+# zero_on_epsilon_shrinking_of_subdomain_y = sym.Piecewise(
+#     (1, y<=-2*epsilon_x_inner),
+#     (mollifier_handle(y+2*epsilon_x_inner), ((-2*epsilon_x_inner<y) & (y<-epsilon_x_inner))),
+#     (0, ((-epsilon_x_inner<=y) & (y<=epsilon_x_inner))),
+#     (mollifier_handle(y-2*epsilon_x_inner), ((epsilon_x_inner<y) & (y<2*epsilon_x_inner))),
+#     (1, True),
+# )
+#
+# zero_on_shrinking = zero_on_epsilon_shrinking_of_subdomain #zero_on_epsilon_shrinking_of_subdomain_x + zero_on_epsilon_shrinking_of_subdomain_y
+# gaussian = pw_sym2d_x# pw_sym_y*pw_sym_x
+# cutoff = gaussian/(gaussian + zero_on_shrinking)
 
 # # construction of differentiable characteristic function.
 # def smooth_characteristic_func_on_epsilon_shrinking_of_subdomain0(x, y, epsilon_x_inner, epsilon_y_inner, epsilon_x_outer, epsilon_y_outer):
@@ -349,10 +337,29 @@ cutoff = gaussian/(gaussian + zero_on_shrinking)
 #     sym.Piecewise((0, is_inside))
 
 p_e_sym = {
-    0: {'wetting': (-7 - (1+t*t)*(1 + x*x + y*y)),  #*cutoff,
+    0: {'wetting': (-6 - (1+t*t)*(1 + x*x + y*y)),  #*cutoff,
         'nonwetting': (-1 -t*(1.1+y + x**2))},  #*cutoff},
 }
 
+# p_e_sym = {
+#     0: {'wetting': -(sym.cos(2*t-x - 2*y)*sym.sin(3*(1+y)/2*sym.pi)*sym.sin(5*(1+x)/2*sym.pi))**2,
+#         'nonwetting': -6*(sym.cos(t-x -y)*sym.sin(3*(1+y)/2*sym.pi)*sym.sin(5*(1+x)/2*sym.pi))**2},
+# }
+
+
+print(f"\n\n\nsymbolic type is {type(p_e_sym[0]['wetting'])}\n\n\n")
+# # pw_sym_x*pw_sym_y
+# p_e_sym = {
+#     0: {'wetting': -3*pw_sym2d_x + 0*t,
+#         'nonwetting': -1*pw_sym_x*pw_sym_y+ 0*t},
+# }
+
+# p_e_sym = {
+#     0: {'wetting': -3*cutoff + 0*t,
+#         'nonwetting': -1*zero_on_shrinking+ 0*t},
+# }
+
+
 pc_e_sym = dict()
 for subdomain, isR in isRichards.items():
     if isR:
@@ -361,7 +368,6 @@ for subdomain, isR in isRichards.items():
         pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting']
                                         - p_e_sym[subdomain]['wetting']})
 
-
 symbols = {"x": x,
            "y": y,
            "t": t}
@@ -415,11 +421,11 @@ for subdomain in isRichards.keys():
                 )
 
 
-# def saturation(pressure, subdomain_index):
-#     # inverse capillary pressure-saturation-relationship
-#     return df.conditional(pressure < 0, 1/((1 - pressure)**(1/(subdomain_index + 1))), 1)
-#
-# sa
+
+f = open('TP-one-patch-new-gravity-test.py', 'r')
+print(f.read())
+f.close()
+
 for starttime in starttimes:
     for mesh_resolution, solver_tol in resolutions.items():
         # initialise LDD simulation class
diff --git a/Two-phase-Two-phase/one-patch/TP-one-patch/mesh_study/R-one-patch-mesh-study-alternative.py b/Two-phase-Two-phase/one-patch/Archive/TP-one-patch-no-exact-injection.py
similarity index 51%
rename from Two-phase-Two-phase/one-patch/TP-one-patch/mesh_study/R-one-patch-mesh-study-alternative.py
rename to Two-phase-Two-phase/one-patch/Archive/TP-one-patch-no-exact-injection.py
index 825595390f4b32d71239cbf6439c8f01ea3f35ea..9f405c160fa7904d7789480e9b1b237344204e16 100755
--- a/Two-phase-Two-phase/one-patch/TP-one-patch/mesh_study/R-one-patch-mesh-study-alternative.py
+++ b/Two-phase-Two-phase/one-patch/Archive/TP-one-patch-no-exact-injection.py
@@ -19,55 +19,41 @@ datestr = date.strftime("%Y-%m-%d")
 # init sympy session
 sym.init_printing()
 
-use_case = "R-one-patch-mesh-study"
-# solver_tol = 5E-9
-max_iter_num = 1000
+use_case = "TP-one-patch-no-exact-injection"
+# solver_tol = 6E-7
+max_iter_num = 500
 FEM_Lagrange_degree = 1
-mesh_study = True
-# resolutions = {128: 1e-7} #[1,2,3,4,5,10,20,40,75,100]
+mesh_study = False
 resolutions = {
-                # 1: 1e-7,
-                # 2: 1e-7,
-                # 4: 1e-7,
-                # 8: 1e-7,
-                # 16: 1e-7,
-                32: 1e-7,
-                # 64: 1e-7,
-                # 128: 1e-7,
-                # 256: 1e-7,
-                # 512: 1e-7,
+                # 1: 1e-6,
+                # 2: 1e-6,
+                # 4: 1e-6,
+                # 8: 1e-6,
+                16: 1e-6,
+                # 32: 1e-6,
+                # 64: 1e-6,
+                # 128: 1e-6,
+                # 256: 1e-6,
                 }
 
 ############ GRID #######################
 # mesh_resolution = 20
 timestep_size = 0.001
-number_of_timesteps = 10
+number_of_timesteps = 20
 plot_timestep_every = 1
 # decide how many timesteps you want analysed. Analysed means, that we write out
 # subsequent errors of the L-iteration within the timestep.
 number_of_timesteps_to_analyse = 5
-starttimes = [0.5]
-# starttimes = [0.0, 0.05]
-
-# starttimes = {
-#     1: 0.0
-#     2: 0.05
-#     4: 0.1
-#     8: 0.2
-#     16: 0.4
-#     32: 0.7
-#     64: 1.0
-#     128: 1.3
-# }
+starttimes = [0.0]
 
-Lw = 0.5 #/timestep_size
+Lw = 1 #/timestep_size
 Lnw=Lw
 
 lambda_w = 0
 lambda_nw = 0
 
 include_gravity = False
-debugflag = False
+debugflag = True
 analyse_condition = True
 
 if mesh_study:
@@ -82,11 +68,11 @@ if mesh_study:
     write_to_file = {
         'space_errornorms': True,
         'meshes_and_markers': True,
-        'L_iterations_per_timestep': True,
-        'solutions': True,
-        'absolute_differences': True,
+        'L_iterations_per_timestep': False,
+        'solutions': False,
+        'absolute_differences': False,
         'condition_numbers': analyse_condition,
-        'subsequent_errors': True
+        'subsequent_errors': False
     }
 else:
     write_to_file = {
@@ -99,6 +85,7 @@ else:
         'subsequent_errors': True
     }
 
+
 ##### Domain and Interface ####
 # global simulation domain domain
 sub_domain0_vertices = [df.Point(-1.0, -1.0),  #
@@ -136,7 +123,7 @@ outer_boundary_def_points = {
 # interface i (i.e. given by interface_def_points[i]).
 adjacent_subdomains = None
 isRichards = {
-    0: True, #
+    0: False, #
     }
 
 viscosity = {#
@@ -156,7 +143,7 @@ densities = {
         'nonwetting': 1}, #1225}
 }
 
-gravity_acceleration = 9.81
+gravity_acceleration = 1
 
 L = {#
 # subdom_num : subdomain L for L-scheme
@@ -169,15 +156,19 @@ lambda_param = {#
     0: {'wetting' :lambda_w,
          'nonwetting': lambda_nw},#
 }
+intrinsic_permeability = {
+    0: {"wetting": 1,
+        "nonwetting": 1},
+}
 
 ## relative permeabilty functions on subdomain 1
 def rel_perm1w(s):
     # relative permeabilty wetting on subdomain1
-    return s**2
+    return intrinsic_permeability[0]["wetting"]*s**2
 
 def rel_perm1nw(s):
     # relative permeabilty nonwetting on subdomain1
-    return (1-s)**2
+    return intrinsic_permeability[0]["nonwetting"]*(1-s)**2
 
 _rel_perm1w = ft.partial(rel_perm1w)
 _rel_perm1nw = ft.partial(rel_perm1nw)
@@ -186,30 +177,74 @@ subdomain1_rel_perm = {
     'wetting': _rel_perm1w,#
     'nonwetting': _rel_perm1nw
 }
+# ## relative permeabilty functions on subdomain 2
+# def rel_perm2w(s):
+#     # relative permeabilty wetting on subdomain2
+#     return intrinsic_permeability[2]["wetting"]*s**2
+# def rel_perm2nw(s):
+#     # relative permeabilty nonwetting on subdosym.cos(0.8*t - (0.8*x + 1/7*y))main2
+#     return intrinsic_permeability[2]["nonwetting"]*(1-s)**2
+#
+# _rel_perm2w = ft.partial(rel_perm2w)
+# _rel_perm2nw = ft.partial(rel_perm2nw)
+
+# subdomain2_rel_perm = {
+#     'wetting': _rel_perm2w,#
+#     'nonwetting': _rel_perm2nw
+# }
+#
+# subdomain2_rel_perm = {
+#     'wetting': _rel_perm1w,#
+#     'nonwetting': _rel_perm1nw
+# }
 
 ## dictionary of relative permeabilties on all domains.
 relative_permeability = {#
-    0: subdomain1_rel_perm,
+    0: subdomain1_rel_perm
 }
 
+
 # definition of the derivatives of the relative permeabilities
 # relative permeabilty functions on subdomain 1
 def rel_perm1w_prime(s):
     # relative permeabilty on subdomain1
-    return 2*s
+    return intrinsic_permeability[0]["wetting"]*2*s
 
 def rel_perm1nw_prime(s):
     # relative permeabilty on subdomain1
-    return -2*(1-s)
+    return -1*intrinsic_permeability[0]["nonwetting"]*2*(1-s)
+
+# # # definition of the derivatives of the relative permeabilities
+# # # relative permeabilty functions on subdomain 1
+# def rel_perm2w_prime(s):
+#     # relative permeabilty on subdomain1
+#     return intrinsic_permeability[2]["wetting"]*2*s
+#
+# def rel_perm2nw_prime(s):
+#     # relative permeabilty on subdomain1
+#     return -1*intrinsic_permeability[2]["nonwetting"]*2*(1-s)
 
 _rel_perm1w_prime = ft.partial(rel_perm1w_prime)
 _rel_perm1nw_prime = ft.partial(rel_perm1nw_prime)
+# _rel_perm2w_prime = ft.partial(rel_perm2w_prime)
+# _rel_perm2nw_prime = ft.partial(rel_perm2nw_prime)
 
 subdomain1_rel_perm_prime = {
     'wetting': _rel_perm1w_prime,
     'nonwetting': _rel_perm1nw_prime
 }
 
+
+# subdomain2_rel_perm_prime = {
+#     'wetting': _rel_perm2w_prime,
+#     'nonwetting': _rel_perm2nw_prime
+# }
+#
+# subdomain2_rel_perm_prime = {
+#     'wetting': _rel_perm1w_prime,
+#     'nonwetting': _rel_perm1nw_prime
+# }
+
 # dictionary of relative permeabilties on all domains.
 ka_prime = {
     0: subdomain1_rel_perm_prime,
@@ -221,6 +256,7 @@ def saturation(pc, index):
     # inverse capillary pressure-saturation-relationship
     return df.conditional(pc > 0, 1/((1 + pc)**(1/(index + 1))), 1)
 
+
 def saturation_sym(pc, index):
     # inverse capillary pressure-saturation-relationship
     return 1/((1 + pc)**(1/(index + 1)))
@@ -233,37 +269,78 @@ def saturation_sym_prime(pc, index):
     return -1/((index+1)*(1 + pc)**((index+2)/(index+1)))
 
 
-# def saturation(pc, index):
-#     # inverse capillary pressure-saturation-relationship
-#     return df.conditional(pc > 0, -index*pc, 1)
-#
-#
-# def saturation_sym(pc, index):
-#     # inverse capillary pressure-saturation-relationship
-#     return -index*pc
-#
-#
-# # derivative of S-pc relationship with respect to pc. This is needed for the
-# # construction of a analytic solution.
-# def saturation_sym_prime(pc, index):
-#     # inverse capillary pressure-saturation-relationship
-#     return -index
-
-
 # note that the conditional definition of S-pc in the nonsymbolic part will be
 # incorporated in the construction of the exact solution below.
 S_pc_sym = {
-    0: ft.partial(saturation_sym, index=1),
+    0: ft.partial(saturation_sym, index=1)
+    # 2: ft.partial(saturation_sym, index=2),
+    # 3: ft.partial(saturation_sym, index=2),
+    # 4: ft.partial(saturation_sym, index=1)
 }
 
 S_pc_sym_prime = {
-    0: ft.partial(saturation_sym_prime, index=1),
+    0: ft.partial(saturation_sym_prime, index=1)
+    # 2: ft.partial(saturation_sym_prime, index=2),
+    # 3: ft.partial(saturation_sym_prime, index=2),
+    # 4: ft.partial(saturation_sym_prime, index=1)
 }
 
 sat_pressure_relationship = {
-    0: ft.partial(saturation, index=1),
+    0: ft.partial(saturation, index=1)
+    # 2: ft.partial(saturation, index=2),
+    # 3: ft.partial(saturation, index=2),
+    # 4: ft.partial(saturation, index=1)
 }
 
+#
+# def saturation(pc, n_index, alpha):
+#     # inverse capillary pressure-saturation-relationship
+#     return df.conditional(pc > 0, 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)), 1)
+#
+# # S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where
+# # we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw
+# def saturation_sym(pc, n_index, alpha):
+#     # inverse capillary pressure-saturation-relationship
+#     #df.conditional(pc > 0,
+#     return 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index))
+#
+#
+# # derivative of S-pc relationship with respect to pc. This is needed for the
+# # construction of a analytic solution.
+# def saturation_sym_prime(pc, n_index, alpha):
+#     # inverse capillary pressure-saturation-relationship
+#     return -(alpha*(n_index - 1)*(alpha*pc)**(n_index - 1)) / ( (1 + (alpha*pc)**n_index)**((2*n_index - 1)/n_index) )
+#
+# # note that the conditional definition of S-pc in the nonsymbolic part will be
+# # incorporated in the construction of the exact solution below.
+# S_pc_sym = {
+#     1: ft.partial(saturation_sym, n_index=3, alpha=0.001),
+#     2: ft.partial(saturation_sym, n_index=6, alpha=0.001),
+#     # 3: ft.partial(saturation_sym, n_index=3, alpha=0.001),
+#     # 4: ft.partial(saturation_sym, n_index=3, alpha=0.001),
+#     # 5: ft.partial(saturation_sym, n_index=3, alpha=0.001),
+#     # 6: ft.partial(saturation_sym, n_index=3, alpha=0.001)
+# }
+#
+# S_pc_sym_prime = {
+#     1: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001),
+#     2: ft.partial(saturation_sym_prime, n_index=6, alpha=0.001),
+#     # 3: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001),
+#     # 4: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001),
+#     # 5: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001),
+#     # 6: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001)
+# }
+#
+# sat_pressure_relationship = {
+#     1: ft.partial(saturation, n_index=3, alpha=0.001),
+#     2: ft.partial(saturation, n_index=6, alpha=0.001),
+#     # 3: ft.partial(saturation, n_index=3, alpha=0.001),
+#     # 4: ft.partial(saturation, n_index=3, alpha=0.001),
+#     # 5: ft.partial(saturation, n_index=3, alpha=0.001),
+#     # 6: ft.partial(saturation, n_index=3, alpha=0.001)
+# }
+#
+
 
 #############################################
 # Manufacture source expressions with sympy #
@@ -271,120 +348,132 @@ sat_pressure_relationship = {
 x, y = sym.symbols('x[0], x[1]')  # needed by UFL
 t = sym.symbols('t', positive=True)
 
-epsilon_x_inner = 0.7
-epsilon_x_outer = 0.99
-epsilon_y_inner = epsilon_x_inner
-epsilon_y_outer = epsilon_x_outer
+initial_condition = {
+    0: {'wetting': sym.printing.ccode(-6*(1-x*x)*(1-y*y)),  #*cutoff,
+        'nonwetting': sym.printing.ccode(-(1-x*x)*(1-y*y))}  #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2},
+    # 2: {'wetting': sym.printing.ccode(-6*(1-x*x)*(1-y*y)),  #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2,
+    #     'nonwetting': sym.printing.ccode(-(1-x*x)*(1-y*y))},  #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2},
+}
 
-def mollifier(x, epsilon):
+### constructing source experessions.
+injection_coord = [-0.65, -0.6]
+extraction_coord = [0.75, 0.75]
+injection_radius = 0.1
+extraction_radius = 0.1
+injection_rate = 0.05
+extraction_rate = 0.05
+# epsilon_y_inner = epsilon_x_inner
+# epsilon_y_outer = epsilon_x_outer
+#
+# def mollifier(x, epsilon):
+#     """ one d mollifier """
+#     out_expr = sym.exp(-1/(1-(x/epsilon)**2) + 1)
+#     return out_expr
+#
+# mollifier_handle = ft.partial(mollifier, epsilon=epsilon_x_inner)
+#
+# pw_sym_x = sym.Piecewise(
+#     (mollifier_handle(x), x**2 < epsilon_x_outer**2),
+#     (0, True)
+# )
+# pw_sym_y = sym.Piecewise(
+#     (mollifier_handle(y), y**2 < epsilon_y_outer**2),
+#     (0, True)
+# )
+#
+def mollifier2d(x, y, epsilon, height):
     """ one d mollifier """
-    out_expr = sym.exp(-1/(1-(x/epsilon)**2) + 1)
+    out_expr = height*sym.exp(-1/(1-(x**2 + y**2)/epsilon**2))
     return out_expr
 
-mollifier_handle = ft.partial(mollifier, epsilon=epsilon_x_inner)
+mollifier2d_handle_i = ft.partial(mollifier2d, epsilon=injection_radius, height=injection_rate)
 
-pw_sym_x = sym.Piecewise(
-    (mollifier_handle(x), x**2 < epsilon_x_outer**2),
-    (0, True)
-)
-pw_sym_y = sym.Piecewise(
-    (mollifier_handle(y), y**2 < epsilon_y_outer**2),
-    (0, True)
+source_in = sym.Piecewise(
+    ((0.01/(1 + 4*t**2/timestep_size))*mollifier2d_handle_i(x, y), (x-injection_coord[0])**2 + (y-injection_coord[1])**2 < injection_radius**2),
+    (0*t, True)
 )
 
-def mollifier2d(x, y, epsilon):
-    """ one d mollifier """
-    out_expr = sym.exp(-1/(1-(x**2 + y**2)/epsilon**2) + 1)
-    return out_expr
+mollifier2d_handle_e = ft.partial(mollifier2d, epsilon=extraction_radius, height=extraction_rate)
 
-mollifier2d_handle = ft.partial(mollifier2d, epsilon=epsilon_x_outer)
-
-pw_sym2d_x = sym.Piecewise(
-    (mollifier2d_handle(x, y), x**2 + y**2 < epsilon_x_outer**2),
-    (0, True)
+source_ext = sym.Piecewise(
+    (-0.01*(1/(1 + 4*t**2/timestep_size))*mollifier2d_handle_e(x, y), (x-extraction_coord[0])**2 + (y-extraction_coord[1])**2 < extraction_radius**2),
+    (0*t, True)
 )
 
-zero_on_epsilon_shrinking_of_subdomain = sym.Piecewise(
-    (mollifier_handle(sym.sqrt(x**2 + y**2)+2*epsilon_x_inner), ((-2*epsilon_x_inner<sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<-epsilon_x_inner))),
-    (0, ((-epsilon_x_inner<=sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<=epsilon_x_inner))),
-    (mollifier_handle(sym.sqrt(x**2 + y**2)-2*epsilon_x_inner), ((epsilon_x_inner<sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<2*epsilon_x_inner))),
-    (1, True),
-)
+extraction_water_ratio = 0.7
+injection_water_ratio = 0.7
 
-zero_on_epsilon_shrinking_of_subdomain_x = sym.Piecewise(
-    (mollifier_handle(x+2*epsilon_x_inner), ((-2*epsilon_x_inner<x) & (x<-epsilon_x_inner))),
-    (0, ((-epsilon_x_inner<=x) & (x<=epsilon_x_inner))),
-    (mollifier_handle(x-2*epsilon_x_inner), ((epsilon_x_inner<x) & (x<2*epsilon_x_inner))),
-    (1, True),
-)
+# "wetting": sym.printing.ccode(extraction_water_ratio*source_ext),
+#     "nonwetting": sym.printing.ccode((1-extraction_water_ratio)*source_ext)
 
-zero_on_epsilon_shrinking_of_subdomain_y = sym.Piecewise(
-    (1, y<=-2*epsilon_x_inner),
-    (mollifier_handle(y+2*epsilon_x_inner), ((-2*epsilon_x_inner<y) & (y<-epsilon_x_inner))),
-    (0, ((-epsilon_x_inner<=y) & (y<=epsilon_x_inner))),
-    (mollifier_handle(y-2*epsilon_x_inner), ((epsilon_x_inner<y) & (y<2*epsilon_x_inner))),
-    (1, True),
-)
+source_expression = {
+    # 0: {"wetting": sym.printing.ccode(0*t),
+    #     "nonwetting": sym.printing.ccode(0*t)},
+    0: {"wetting": sym.printing.ccode(injection_water_ratio*(source_in + source_ext)),
+        "nonwetting": sym.printing.ccode((1-injection_water_ratio)*(source_in  + source_ext))}
+}
 
-zero_on_shrinking = zero_on_epsilon_shrinking_of_subdomain #zero_on_epsilon_shrinking_of_subdomain_x + zero_on_epsilon_shrinking_of_subdomain_y
-gaussian = pw_sym2d_x# pw_sym_y*pw_sym_x
-cutoff = gaussian/(gaussian + zero_on_shrinking)
-
-# # construction of differentiable characteristic function.
-# def smooth_characteristic_func_on_epsilon_shrinking_of_subdomain0(x, y, epsilon_x_inner, epsilon_y_inner, epsilon_x_outer, epsilon_y_outer):
-#     dist_to_complement_x = ft.partial(mollifier, epsilon=epsilon_x_inner)
-#     dist_to_complement_y = ft.partial(mollifier, epsilon=epsilon_y_inner)
-#     dist_to_complement = dist_to_complement_y(y)*dist_to_complement_x(x)
-#     dist_to_eps_shrinking_x = ft.partial(zero_outside_epsilon_thickening_of_subdomain, epsilon=epsilon_x_outer)
-#     dist_to_eps_shrinking_y = ft.partial(zero_outside_epsilon_thickening_of_subdomain, epsilon=epsilon_y_outer)
-#     dist_to_eps_shrinking = dist_to_eps_shrinking_y(y)*dist_to_eps_shrinking_x(x)
-#     return dist_to_complement/(dist_to_eps_shrinking + dist_to_complement)
+exact_solution = None
 #
+# zero_on_epsilon_shrinking_of_subdomain = sym.Piecewise(
+#     (mollifier_handle(sym.sqrt(x**2 + y**2)+2*epsilon_x_inner), ((-2*epsilon_x_inner<sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<-epsilon_x_inner))),
+#     (0, ((-epsilon_x_inner<=sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<=epsilon_x_inner))),
+#     (mollifier_handle(sym.sqrt(x**2 + y**2)-2*epsilon_x_inner), ((epsilon_x_inner<sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<2*epsilon_x_inner))),
+#     (1, True),
+# )
+#
+# zero_on_epsilon_shrinking_of_subdomain_x = sym.Piecewise(
+#     (mollifier_handle(x+2*epsilon_x_inner), ((-2*epsilon_x_inner<x) & (x<-epsilon_x_inner))),
+#     (0, ((-epsilon_x_inner<=x) & (x<=epsilon_x_inner))),
+#     (mollifier_handle(x-2*epsilon_x_inner), ((epsilon_x_inner<x) & (x<2*epsilon_x_inner))),
+#     (1, True),
+# )
+#
+# zero_on_epsilon_shrinking_of_subdomain_y = sym.Piecewise(
+#     (1, y<=-2*epsilon_x_inner),
+#     (mollifier_handle(y+2*epsilon_x_inner), ((-2*epsilon_x_inner<y) & (y<-epsilon_x_inner))),
+#     (0, ((-epsilon_x_inner<=y) & (y<=epsilon_x_inner))),
+#     (mollifier_handle(y-2*epsilon_x_inner), ((epsilon_x_inner<y) & (y<2*epsilon_x_inner))),
+#     (1, True),
+# )
+#
+# zero_on_shrinking = zero_on_epsilon_shrinking_of_subdomain #zero_on_epsilon_shrinking_of_subdomain_x + zero_on_epsilon_shrinking_of_subdomain_y
+# gaussian = pw_sym2d_x# pw_sym_y*pw_sym_x
+# cutoff = gaussian/(gaussian + zero_on_shrinking)
 
-# def dist_to_epsilon_thickening_of_subdomain0_complement(x, y, epsilon):
-#     """ calculates the (euklidian distance)^2 of a point x,y to the epsilon
-#         thickening of the complement of the domain.
-#     """
-#     is_inside = ((1-sym.Abs(x) > epsilon) & (1-sym.Abs(y) > epsilon))
-#     sym.Piecewise((0, is_inside))
-
-p_e_sym = {
-    0: {'wetting': (-7 -1*t*(1 + x + y)),  #*cutoff,
-        'nonwetting': (-1 -1*t*(1.1+y + x))},  #*cutoff},
-}
 
-pc_e_sym = dict()
-for subdomain, isR in isRichards.items():
-    if isR:
-        pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting']})
-    else:
-        pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting']
-                                        - p_e_sym[subdomain]['wetting']})
+# pc_e_sym = dict()
+# for subdomain, isR in isRichards.items():
+#     if isR:
+#         pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting'].copy()})
+#     else:
+#         pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'].copy()
+#                                         - p_e_sym[subdomain]['wetting'].copy()})
 
 
 symbols = {"x": x,
            "y": y,
            "t": t}
-# turn above symbolic code into exact solution for dolphin and
-# construct the rhs that matches the above exact solution.
-exact_solution_example = hlp.generate_exact_solution_expressions(
-                        symbols=symbols,
-                        isRichards=isRichards,
-                        symbolic_pressure=p_e_sym,
-                        symbolic_capillary_pressure=pc_e_sym,
-                        saturation_pressure_relationship=S_pc_sym,
-                        saturation_pressure_relationship_prime=S_pc_sym_prime,
-                        viscosity=viscosity,
-                        porosity=porosity,
-                        relative_permeability=relative_permeability,
-                        relative_permeability_prime=ka_prime,
-                        densities=densities,
-                        gravity_acceleration=gravity_acceleration,
-                        include_gravity=include_gravity,
-                        )
-source_expression = exact_solution_example['source']
-exact_solution = exact_solution_example['exact_solution']
-initial_condition = exact_solution_example['initial_condition']
+# # turn above symbolic code into exact solution for dolphin and
+# # construct the rhs that matches the above exact solution.
+# exact_solution_example = hlp.generate_exact_solution_expressions(
+#                         symbols=symbols,
+#                         isRichards=isRichards,
+#                         symbolic_pressure=p_e_sym,
+#                         symbolic_capillary_pressure=pc_e_sym,
+#                         saturation_pressure_relationship=S_pc_sym,
+#                         saturation_pressure_relationship_prime=S_pc_sym_prime,
+#                         viscosity=viscosity,
+#                         porosity=porosity,
+#                         relative_permeability=relative_permeability,
+#                         relative_permeability_prime=ka_prime,
+#                         densities=densities,
+#                         gravity_acceleration=gravity_acceleration,
+#                         include_gravity=include_gravity,
+#                         )
+# source_expression = exact_solution_example['source']
+# exact_solution = exact_solution_example['exact_solution']
+# initial_condition = exact_solution_example['initial_condition']
 
 # Dictionary of dirichlet boundary conditions.
 dirichletBC = dict()
@@ -411,15 +500,20 @@ for subdomain in isRichards.keys():
         # the subdomain.
         for outer_boundary_ind in outer_boundary_def_points[subdomain].keys():
             dirichletBC[subdomain].update(
-                {outer_boundary_ind: exact_solution[subdomain]}
+                # {outer_boundary_ind: exact_solution[subdomain]}
+                {
+                    outer_boundary_ind: {
+                        "wetting": sym.printing.ccode(0*t),
+                        "nonwetting": sym.printing.ccode(0*t)
+                        }
+                }
                 )
 
 
-# def saturation(pressure, subdomain_index):
-#     # inverse capillary pressure-saturation-relationship
-#     return df.conditional(pressure < 0, 1/((1 - pressure)**(1/(subdomain_index + 1))), 1)
-#
-# sa
+f = open('TP-one-patch-no-exact-injection.py', 'r')
+print(f.read())
+f.close()
+
 for starttime in starttimes:
     for mesh_resolution, solver_tol in resolutions.items():
         # initialise LDD simulation class
diff --git a/Two-phase-Two-phase/one-patch/TP-one-patch/mesh_study/TP-one-patch-mesh-study.py b/Two-phase-Two-phase/one-patch/Archive/TP-one-patch-no-exact-solution.py
similarity index 73%
rename from Two-phase-Two-phase/one-patch/TP-one-patch/mesh_study/TP-one-patch-mesh-study.py
rename to Two-phase-Two-phase/one-patch/Archive/TP-one-patch-no-exact-solution.py
index bed62b609b08a817ee764588d230195c31e6a9d2..a7bb078143e3a6603348fa83a7c1f8283ff2ef05 100755
--- a/Two-phase-Two-phase/one-patch/TP-one-patch/mesh_study/TP-one-patch-mesh-study.py
+++ b/Two-phase-Two-phase/one-patch/Archive/TP-one-patch-no-exact-solution.py
@@ -12,6 +12,11 @@ import datetime
 import os
 import pandas as pd
 
+#import ufl as ufl
+
+# init sympy session
+sym.init_printing()
+
 date = datetime.datetime.now()
 datestr = date.strftime("%Y-%m-%d")
 #import ufl as ufl
@@ -19,43 +24,50 @@ datestr = date.strftime("%Y-%m-%d")
 # init sympy session
 sym.init_printing()
 
-use_case = "TP-one-patch"
-# solver_tol = 5E-9
-max_iter_num = 500
+use_case = "TP-one-patch-no-exact-solution-test"
+# solver_tol = 5E-7
+max_iter_num = 1000
 FEM_Lagrange_degree = 1
-mesh_study = True
-# resolutions = {128: 1e-7} #[1,2,3,4,5,10,20,40,75,100]
-resolutions = { 1: 1e-7,
-                2: 1e-7,
-                4: 1e-7,
-                8: 1e-7,
-                16: 1e-7,
-                32: 1e-7,
-                64: 1e-7,
-                128: 1e-7,
-                256: 1e-7}
+mesh_study = False
+resolutions = {
+                # 1: 1e-7,  # h=2
+                # 2: 2e-5,  # h=1.1180
+                # 4: 1e-6,  # h=0.5590
+                # 8: 1e-6,  # h=0.2814
+                # 16: 5e-7, # h=0.1412
+                32: 1e-6,
+                # 64: 5e-7,
+                # 128: 5e-7
+                }
+
 
 ############ GRID #######################
 # mesh_resolution = 20
-timestep_size = 0.01
-number_of_timesteps = 80
+timestep_size = 0.005
+number_of_timesteps = 20
 plot_timestep_every = 1
 # decide how many timesteps you want analysed. Analysed means, that we write out
 # subsequent errors of the L-iteration within the timestep.
-number_of_timesteps_to_analyse = 4
+number_of_timesteps_to_analyse = 0
 starttime = 0.0
 
-Lw = 0.025 #/timestep_size
+Lw = 0.25 #/timestep_size
 Lnw=Lw
 
 lambda_w = 40
 lambda_nw = 40
 
 include_gravity = False
-debugflag = False
+debugflag = True
 analyse_condition = False
 
-output_string = "./output/{}-{}_timesteps{}_P{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree)
+if mesh_study:
+    output_string = "./output/{}-{}_timesteps{}_P{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree)
+else:
+    for tol in resolutions.values():
+        solver_tol = tol
+    output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol)
+
 
 # toggle what should be written to files
 if mesh_study:
@@ -63,22 +75,23 @@ if mesh_study:
         'space_errornorms': True,
         'meshes_and_markers': True,
         'L_iterations_per_timestep': False,
-        'solutions': True,
+        'solutions': False,
         'absolute_differences': False,
         'condition_numbers': analyse_condition,
-        'subsequent_errors': True
+        'subsequent_errors': False
     }
 else:
     write_to_file = {
         'space_errornorms': True,
         'meshes_and_markers': True,
-        'L_iterations_per_timestep': False,
+        'L_iterations_per_timestep': True,
         'solutions': True,
         'absolute_differences': True,
         'condition_numbers': analyse_condition,
         'subsequent_errors': True
     }
 
+
 ##### Domain and Interface ####
 # global simulation domain domain
 sub_domain0_vertices = [df.Point(-1.0, -1.0),  #
@@ -329,10 +342,29 @@ cutoff = gaussian/(gaussian + zero_on_shrinking)
 #     sym.Piecewise((0, is_inside))
 
 p_e_sym = {
-    0: {'wetting': (-7 - (1+t*t)*(1 + x*x + y*y)),  #*cutoff,
+    0: {'wetting': (-6 - (1+t*t)*(1 + x*x + y*y)),  #*cutoff,
         'nonwetting': (-1 -t*(1.1+y + x**2))},  #*cutoff},
 }
 
+# p_e_sym = {
+#     0: {'wetting': -(sym.cos(2*t-x - 2*y)*sym.sin(3*(1+y)/2*sym.pi)*sym.sin(5*(1+x)/2*sym.pi))**2,
+#         'nonwetting': -6*(sym.cos(t-x -y)*sym.sin(3*(1+y)/2*sym.pi)*sym.sin(5*(1+x)/2*sym.pi))**2},
+# }
+
+
+print(f"\n\n\nsymbolic type is {type(p_e_sym[0]['wetting'])}\n\n\n")
+# # pw_sym_x*pw_sym_y
+# p_e_sym = {
+#     0: {'wetting': -3*pw_sym2d_x + 0*t,
+#         'nonwetting': -1*pw_sym_x*pw_sym_y+ 0*t},
+# }
+
+# p_e_sym = {
+#     0: {'wetting': -3*cutoff + 0*t,
+#         'nonwetting': -1*zero_on_shrinking+ 0*t},
+# }
+
+
 pc_e_sym = dict()
 for subdomain, isR in isRichards.items():
     if isR:
@@ -341,30 +373,90 @@ for subdomain, isR in isRichards.items():
         pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting']
                                         - p_e_sym[subdomain]['wetting']})
 
-
 symbols = {"x": x,
            "y": y,
            "t": t}
-# turn above symbolic code into exact solution for dolphin and
-# construct the rhs that matches the above exact solution.
-exact_solution_example = hlp.generate_exact_solution_expressions(
-                        symbols=symbols,
-                        isRichards=isRichards,
-                        symbolic_pressure=p_e_sym,
-                        symbolic_capillary_pressure=pc_e_sym,
-                        saturation_pressure_relationship=S_pc_sym,
-                        saturation_pressure_relationship_prime=S_pc_sym_prime,
-                        viscosity=viscosity,
-                        porosity=porosity,
-                        relative_permeability=relative_permeability,
-                        relative_permeability_prime=ka_prime,
-                        densities=densities,
-                        gravity_acceleration=gravity_acceleration,
-                        include_gravity=include_gravity,
-                        )
-source_expression = exact_solution_example['source']
-exact_solution = exact_solution_example['exact_solution']
-initial_condition = exact_solution_example['initial_condition']
+# # turn above symbolic code into exact solution for dolphin and
+# # construct the rhs that matches the above exact solution.
+# exact_solution_example = hlp.generate_exact_solution_expressions(
+#                         symbols=symbols,
+#                         isRichards=isRichards,
+#                         symbolic_pressure=p_e_sym,
+#                         symbolic_capillary_pressure=pc_e_sym,
+#                         saturation_pressure_relationship=S_pc_sym,
+#                         saturation_pressure_relationship_prime=S_pc_sym_prime,
+#                         viscosity=viscosity,
+#                         porosity=porosity,
+#                         relative_permeability=relative_permeability,
+#                         relative_permeability_prime=ka_prime,
+#                         densities=densities,
+#                         gravity_acceleration=gravity_acceleration,
+#                         include_gravity=include_gravity,
+#                         )
+# source_expression = exact_solution_example['source']
+### constructing source experessions.
+injection_coord = [-0.65, -0.6]
+extraction_coord = [0.75, 0.7]
+injection_radius = 0.1
+extraction_radius = 0.075
+# epsilon_y_inner = epsilon_x_inner
+# epsilon_y_outer = epsilon_x_outer
+#
+# def mollifier(x, epsilon):
+#     """ one d mollifier """
+#     out_expr = sym.exp(-1/(1-(x/epsilon)**2) + 1)
+#     return out_expr
+#
+# mollifier_handle = ft.partial(mollifier, epsilon=epsilon_x_inner)
+#
+# pw_sym_x = sym.Piecewise(
+#     (mollifier_handle(x), x**2 < epsilon_x_outer**2),
+#     (0, True)
+# )
+# pw_sym_y = sym.Piecewise(
+#     (mollifier_handle(y), y**2 < epsilon_y_outer**2),
+#     (0, True)
+# )
+#
+def mollifier2d(x, y, epsilon):
+    """ one d mollifier """
+    out_expr = 0.05*sym.exp(-1/(1-(x**2 + y**2)/epsilon**2))
+    return out_expr
+
+mollifier2d_handle_i = ft.partial(mollifier2d, epsilon=injection_radius)
+
+source_in = sym.Piecewise(
+    (-(1/(1 + t**2))*mollifier2d_handle_i(x, y), (x-injection_coord[0])**2 + (y-injection_coord[1])**2 < injection_radius**2),
+    (0*t, True)
+)
+
+mollifier2d_handle_e = ft.partial(mollifier2d, epsilon=extraction_radius)
+
+source_ext = sym.Piecewise(
+    (-0.01*(1/(1 + t**2))*mollifier2d_handle_e(x, y), (x-extraction_coord[0])**2 + (y-extraction_coord[1])**2 < extraction_radius**2),
+    (0*t, True)
+)
+
+extraction_water_ratio = 0.7
+injection_water_ratio = 0.7
+
+# "wetting": sym.printing.ccode(extraction_water_ratio*source_ext),
+#     "nonwetting": sym.printing.ccode((1-extraction_water_ratio)*source_ext)
+
+source_expression = {
+    0: {"wetting": sym.printing.ccode(0*t),
+        "nonwetting": sym.printing.ccode(0*t)},
+    # 2: {"wetting": sym.printing.ccode(injection_water_ratio*source_in),
+    #     "nonwetting": sym.printing.ccode((1-injection_water_ratio)*source_in)}
+}
+exact_solution = None
+
+initial_condition = {
+    0: {'wetting': sym.printing.ccode(-6*(1-x*x)*(1-y*y)),  #*cutoff,
+        'nonwetting': sym.printing.ccode(-(1-x*x)*(1-y*y))},  #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2},
+    # 2: {'wetting': sym.printing.ccode(-6*(1-x*x)*(1-y*y)),  #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2,
+    #     'nonwetting': sym.printing.ccode(-(1-x*x)*(1-y*y))},  #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2},
+}
 
 # Dictionary of dirichlet boundary conditions.
 dirichletBC = dict()
@@ -391,10 +483,17 @@ for subdomain in isRichards.keys():
         # the subdomain.
         for outer_boundary_ind in outer_boundary_def_points[subdomain].keys():
             dirichletBC[subdomain].update(
-                {outer_boundary_ind: exact_solution[subdomain]}
+                # {outer_boundary_ind: exact_solution[subdomain]}
+                {
+                    outer_boundary_ind: {
+                        "wetting": sym.printing.ccode(0*t),
+                        "nonwetting": sym.printing.ccode(0*t)
+                        }
+                }
                 )
 
 
+
 # def saturation(pressure, subdomain_index):
 #     # inverse capillary pressure-saturation-relationship
 #     return df.conditional(pressure < 0, 1/((1 - pressure)**(1/(subdomain_index + 1))), 1)
diff --git a/Two-phase-Two-phase/one-patch/TP-one-patch/TP-one-patch-purely-postive-pc.py b/Two-phase-Two-phase/one-patch/Archive/TP-one-patch-purely-postive-pc.py
similarity index 100%
rename from Two-phase-Two-phase/one-patch/TP-one-patch/TP-one-patch-purely-postive-pc.py
rename to Two-phase-Two-phase/one-patch/Archive/TP-one-patch-purely-postive-pc.py
diff --git a/Two-phase-Two-phase/one-patch/TP-one-patch/TP-one-patch.py b/Two-phase-Two-phase/one-patch/Archive/TP-one-patch.py
similarity index 100%
rename from Two-phase-Two-phase/one-patch/TP-one-patch/TP-one-patch.py
rename to Two-phase-Two-phase/one-patch/Archive/TP-one-patch.py
diff --git a/Two-phase-Two-phase/one-patch/TP-one-patch.py b/Two-phase-Two-phase/one-patch/TP-one-patch.py
new file mode 100755
index 0000000000000000000000000000000000000000..a4eb720790f1aee3ad5d1b170277ee7bf35744f0
--- /dev/null
+++ b/Two-phase-Two-phase/one-patch/TP-one-patch.py
@@ -0,0 +1,318 @@
+#!/usr/bin/python3
+"""TP one patch soil simulation.
+
+This program sets up an L-scheme based simulation for two-phase
+"""
+import dolfin as df
+import sympy as sym
+import functions as fts
+import LDDsimulation as ldd
+import helpers as hlp
+import datetime
+import os
+import multiprocessing as mp
+import domainSubstructuring as dss
+# init sympy session
+sym.init_printing()
+
+# PREREQUISITS  ###############################################################
+# check if output directory "./output" exists. This will be used in
+# the generation of the output string.
+if not os.path.exists('./output'):
+    os.mkdir('./output')
+    print("Directory ", './output',  " created ")
+else:
+    print("Directory ", './output',  " already exists. Will use as output \
+    directory")
+
+date = datetime.datetime.now()
+datestr = date.strftime("%Y-%m-%d")
+
+# Name of the usecase that will be printed during simulation.
+use_case = "TP-one-patch-realistic-same-intrinsic"
+# The name of this very file. Needed for creating log output.
+thisfile = "TP-one-patch.py"
+
+# GENERAL SOLVER CONFIG  ######################################################
+# maximal iteration per timestep
+max_iter_num = 1000
+FEM_Lagrange_degree = 1
+
+# GRID AND MESH STUDY SPECIFICATIONS  #########################################
+mesh_study = False
+resolutions = {
+                # 1: 1e-6,
+                # 2: 1e-6,
+                # 4: 1e-6,
+                # 8: 1e-6,
+                # 16: 5e-6,
+                32: 1e-6,
+                # 64: 2e-6,
+                # 128: 1e-6,
+                # 256: 1e-6,
+                }
+
+# starttimes gives a list of starttimes to run the simulation from.
+# The list is looped over and a simulation is run with t_0 as initial time
+#  for each element t_0 in starttimes.
+starttimes = {0: 0.0}
+# starttimes = {0: 0.0, 1:0.3, 2:0.6, 3:0.9}
+timestep_size = 0.001
+number_of_timesteps = 2000
+
+# LDD scheme parameters  ######################################################
+Lw = 0.01 #/timestep_size
+Lnw= 0.01
+
+include_gravity = False
+debugflag = False
+analyse_condition = False
+
+# I/O CONFIG  #################################################################
+# when number_of_timesteps is high, it might take a long time to write all
+# timesteps to disk. Therefore, you can choose to only write data of every
+# plot_timestep_every timestep to disk.
+plot_timestep_every = 4
+# Decide how many timesteps you want analysed. Analysed means, that
+# subsequent errors of the L-iteration within the timestep are written out.
+number_of_timesteps_to_analyse = 10
+
+# fine grained control over data to be written to disk in the mesh study case
+# as well as for a regular simuation for a fixed grid.
+if mesh_study:
+    write_to_file = {
+        # output the relative errornorm (integration in space) w.r.t. an exact
+        # solution for each timestep into a csv file.
+        'space_errornorms': True,
+        # save the mesh and marker functions to disk
+        'meshes_and_markers': True,
+        # save xdmf/h5 data for each LDD iteration for timesteps determined by
+        # number_of_timesteps_to_analyse. I/O intensive!
+        'L_iterations_per_timestep': False,
+        # save solution to xdmf/h5.
+        'solutions': True,
+        # save absolute differences w.r.t an exact solution to xdmf/h5 file
+        # to monitor where on the domains errors happen
+        'absolute_differences': True,
+        # analyise condition numbers for timesteps determined by
+        # number_of_timesteps_to_analyse and save them over time to csv.
+        'condition_numbers': analyse_condition,
+        # output subsequent iteration errors measured in L^2  to csv for
+        # timesteps determined by number_of_timesteps_to_analyse.
+        # Usefull to monitor convergence of the acutal LDD solver.
+        'subsequent_errors': True
+    }
+else:
+    write_to_file = {
+        'space_errornorms': True,
+        'meshes_and_markers': True,
+        'L_iterations_per_timestep': True,
+        'solutions': True,
+        'absolute_differences': True,
+        'condition_numbers': analyse_condition,
+        'subsequent_errors': True
+    }
+
+# OUTPUT FILE STRING  #########################################################
+output_string = "./output/{}-{}_timesteps{}_P{}".format(
+    datestr, use_case, number_of_timesteps, FEM_Lagrange_degree
+    )
+
+# DOMAIN AND INTERFACE  #######################################################
+substructuring = dss.globalDomain()
+interface_def_points = substructuring.interface_def_points
+adjacent_subdomains = substructuring.adjacent_subdomains
+subdomain_def_points = substructuring.subdomain_def_points
+outer_boundary_def_points = substructuring.outer_boundary_def_points
+
+# MODEL CONFIGURATION #########################################################
+isRichards = {
+    0: False #
+    }
+
+
+viscosity = {#
+# subdom_num : viscosity
+    0: {'wetting' :1.0,
+         'nonwetting': 1/50} #
+}
+
+porosity = {#
+# subdom_num : porosity
+    0: 0.2
+}
+
+# Dict of the form: { subdom_num : density }
+densities = {
+    0: {'wetting': 997.0,
+        'nonwetting': 1.225}
+}
+
+gravity_acceleration = 9.81
+
+L = {#
+# subdom_num : subdomain L for L-scheme
+    0 : {'wetting' :Lw,
+         'nonwetting': Lnw}
+}
+
+lambda_param = None
+
+intrinsic_permeability = {
+    0: 0.01
+}
+
+# RELATIVE PEMRMEABILITIES
+rel_perm_definition = {
+    0: {"wetting": "Spow2",
+        "nonwetting": "oneMinusSpow2"}
+}
+
+rel_perm_dict = fts.generate_relative_permeability_dicts(rel_perm_definition)
+relative_permeability = rel_perm_dict["ka"]
+ka_prime = rel_perm_dict["ka_prime"]
+
+# S-pc relation
+Spc_on_subdomains = {
+    0: {"testSpc": {"index": 1}}
+}
+
+Spc = fts.generate_Spc_dicts(Spc_on_subdomains)
+S_pc_sym = Spc["symbolic"]
+S_pc_sym_prime = Spc["prime_symbolic"]
+sat_pressure_relationship = Spc["dolfin"]
+
+###############################################################################
+# Manufacture source expressions with sympy #
+###############################################################################
+x, y = sym.symbols('x[0], x[1]')  # needed by UFL
+t = sym.symbols('t', positive=True)
+
+p_e_sym = {
+    0: {'wetting': (-6.0 - (1.0 + t*t)*(1.0 + x*x + y*y)),
+        'nonwetting': (-1 -t*(1.0 + x**2) - sym.sin(2+t**2)**2*y**2) }
+}
+
+pc_e_sym = hlp.generate_exact_symbolic_pc(
+                isRichards=isRichards,
+                symbolic_pressure=p_e_sym
+            )
+
+symbols = {"x": x,
+           "y": y,
+           "t": t}
+# turn above symbolic code into exact solution for dolphin and
+# construct the rhs that matches the above exact solution.
+exact_solution_example = hlp.generate_exact_solution_expressions(
+                        symbols=symbols,
+                        isRichards=isRichards,
+                        symbolic_pressure=p_e_sym,
+                        symbolic_capillary_pressure=pc_e_sym,
+                        saturation_pressure_relationship=S_pc_sym,
+                        saturation_pressure_relationship_prime=S_pc_sym_prime,
+                        viscosity=viscosity,
+                        porosity=porosity,
+                        intrinsic_permeability=intrinsic_permeability,
+                        relative_permeability=relative_permeability,
+                        relative_permeability_prime=ka_prime,
+                        densities=densities,
+                        gravity_acceleration=gravity_acceleration,
+                        include_gravity=include_gravity,
+                        )
+source_expression = exact_solution_example['source']
+exact_solution = exact_solution_example['exact_solution']
+initial_condition = exact_solution_example['initial_condition']
+
+# BOUNDARY CONDITIONS #########################################################
+# Dictionary of dirichlet boundary conditions. If an exact solution case is
+# used, use the hlp.generate_exact_DirichletBC() method to generate the
+# Dirichlet Boundary conditions from the exact solution.
+dirichletBC = hlp.generate_exact_DirichletBC(
+        isRichards=isRichards,
+        outer_boundary_def_points=outer_boundary_def_points,
+        exact_solution=exact_solution
+    )
+# If no exact solution is provided you need to provide a dictionary of boundary
+# conditions. See the definiton of hlp.generate_exact_DirichletBC() to see
+# the structure.
+
+# LOG FILE OUTPUT #############################################################
+# read this file and print it to std out. This way the simulation can produce a
+# log file with ./TP-R-layered_soil.py | tee simulation.log
+f = open(thisfile, 'r')
+print(f.read())
+f.close()
+
+# MAIN ########################################################################
+if __name__ == '__main__':
+    # dictionary of simualation parameters to pass to the run function.
+    # mesh_resolution and starttime are excluded, as they get passed explicitly
+    # to achieve parallelisation in these parameters in these parameters for
+    # mesh studies etc.
+    simulation_parameter = {
+        "tol": 1E-14,
+        "debugflag": debugflag,
+        "max_iter_num": max_iter_num,
+        "FEM_Lagrange_degree": FEM_Lagrange_degree,
+        "mesh_study": mesh_study,
+        "use_case": use_case,
+        "output_string": output_string,
+        "subdomain_def_points": subdomain_def_points,
+        "isRichards": isRichards,
+        "interface_def_points": interface_def_points,
+        "outer_boundary_def_points": outer_boundary_def_points,
+        "adjacent_subdomains": adjacent_subdomains,
+        # "mesh_resolution": mesh_resolution,
+        "viscosity": viscosity,
+        "porosity": porosity,
+        "L": L,
+        "lambda_param": lambda_param,
+        "relative_permeability": relative_permeability,
+        "intrinsic_permeability": intrinsic_permeability,
+        "sat_pressure_relationship": sat_pressure_relationship,
+        # "starttime": starttime,
+        "number_of_timesteps": number_of_timesteps,
+        "number_of_timesteps_to_analyse": number_of_timesteps_to_analyse,
+        "plot_timestep_every": plot_timestep_every,
+        "timestep_size": timestep_size,
+        "source_expression": source_expression,
+        "initial_condition": initial_condition,
+        "dirichletBC": dirichletBC,
+        "exact_solution": exact_solution,
+        "densities": densities,
+        "include_gravity": include_gravity,
+        "gravity_acceleration": gravity_acceleration,
+        "write_to_file": write_to_file,
+        "analyse_condition": analyse_condition
+    }
+    for number_shift, starttime in starttimes.items():
+        simulation_parameter.update(
+            {"starttime_timestep_number_shift": number_shift}
+        )
+        for mesh_resolution, solver_tol in resolutions.items():
+            simulation_parameter.update({"solver_tol": solver_tol})
+            hlp.info(simulation_parameter["use_case"])
+            processQueue = mp.Queue()
+            LDDsim = mp.Process(
+                        target=hlp.run_simulation,
+                        args=(
+                            simulation_parameter,
+                            processQueue,
+                            starttime,
+                            mesh_resolution
+                            )
+                        )
+            LDDsim.start()
+            # LDDsim.join()
+            # hlp.run_simulation(
+            #     mesh_resolution=mesh_resolution,
+            #     starttime=starttime,
+            #     parameter=simulation_parameter
+            #     )
+
+        # LDDsim.join()
+        if mesh_study:
+            simulation_output_dir = processQueue.get()
+            hlp.merge_spacetime_errornorms(isRichards=isRichards,
+                                           resolutions=resolutions,
+                                           output_dir=simulation_output_dir)
diff --git a/Two-phase-Two-phase/one-patch/TP-one-patch/debug_tests/R-one-patch-const-in-time.py b/Two-phase-Two-phase/one-patch/TP-one-patch/debug_tests/R-one-patch-const-in-time.py
deleted file mode 100755
index fb619ab2b354234d0768bbfbbf9fdaefdcc68bdf..0000000000000000000000000000000000000000
--- a/Two-phase-Two-phase/one-patch/TP-one-patch/debug_tests/R-one-patch-const-in-time.py
+++ /dev/null
@@ -1,522 +0,0 @@
-#!/usr/bin/python3
-import dolfin as df
-import mshr
-import numpy as np
-import sympy as sym
-import typing as tp
-import domainPatch as dp
-import LDDsimulation as ldd
-import functools as ft
-import helpers as hlp
-import datetime
-import os
-import pandas as pd
-
-date = datetime.datetime.now()
-datestr = date.strftime("%Y-%m-%d")
-#import ufl as ufl
-
-# init sympy session
-sym.init_printing()
-
-use_case = "R-one-patch-mesh-study-const-in-time"
-# solver_tol = 5E-9
-max_iter_num = 1000
-FEM_Lagrange_degree = 1
-mesh_study = True
-# resolutions = {128: 1e-7} #[1,2,3,4,5,10,20,40,75,100]
-resolutions = {
-                #1: 5e-7,
-                # 2: 5e-7,
-                # 4: 5e-7,
-                # 8: 5e-7,
-                # 16: 5e-7,
-                # 32: 5e-7,
-                64: 5e-7,
-                # 128: 5e-7,
-                # 256: 1e-10,
-                # 512: 1e-10,
-                }
-
-############ GRID #######################
-# mesh_resolution = 20
-timestep_size = 0.005
-number_of_timesteps = 1
-plot_timestep_every = 1
-# decide how many timesteps you want analysed. Analysed means, that we write out
-# subsequent errors of the L-iteration within the timestep.
-number_of_timesteps_to_analyse = 1
-starttimes = [0.0, 0.5, 1]
-
-# starttimes = {
-#     1: 0.0
-#     2: 0.05
-#     4: 0.1
-#     8: 0.2
-#     16: 0.4
-#     32: 0.7
-#     64: 1.0
-#     128: 1.3
-# }
-
-Lw = 0.025 #/timestep_size
-Lnw=Lw
-
-lambda_w = 0
-lambda_nw = 0
-
-include_gravity = False
-debugflag = False
-analyse_condition = False
-
-if mesh_study:
-    output_string = "./output/{}-{}_timesteps{}_P{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree)
-else:
-    for tol in resolutions.values():
-        solver_tol = tol
-    output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol)
-
-# toggle what should be written to files
-if mesh_study:
-    write_to_file = {
-        'space_errornorms': True,
-        'meshes_and_markers': True,
-        'L_iterations_per_timestep': True,
-        'solutions': True,
-        'absolute_differences': True,
-        'condition_numbers': analyse_condition,
-        'subsequent_errors': True
-    }
-else:
-    write_to_file = {
-        'space_errornorms': True,
-        'meshes_and_markers': True,
-        'L_iterations_per_timestep': False,
-        'solutions': True,
-        'absolute_differences': True,
-        'condition_numbers': analyse_condition,
-        'subsequent_errors': True
-    }
-
-
-##### Domain and Interface ####
-# global simulation domain domain
-sub_domain0_vertices = [df.Point(-1.0,-1.0), #
-                        df.Point(1.0,-1.0),#
-                        df.Point(1.0,1.0),#
-                        df.Point(-1.0,1.0)]
-
-subdomain0_outer_boundary_verts = {
-    0: [sub_domain0_vertices[0],
-        sub_domain0_vertices[1],
-        sub_domain0_vertices[2],
-        sub_domain0_vertices[3],
-        sub_domain0_vertices[0]]
-}
-
-# list of subdomains given by the boundary polygon vertices.
-# Subdomains are given as a list of dolfin points forming
-# a closed polygon, such that mshr.Polygon(subdomain_def_points[i]) can be used
-# to create the subdomain. subdomain_def_points[0] contains the
-# vertices of the global simulation domain and subdomain_def_points[i] contains the
-# vertices of the subdomain i.
-subdomain_def_points = [sub_domain0_vertices]
-# in the below list, index 0 corresponds to the 12 interface which has index 1
-interface_def_points = None
-
-# if a subdomain has no outer boundary write None instead, i.e.
-# i: None
-# if i is the index of the inner subdomain.
-outer_boundary_def_points = {
-    # subdomain number
-    0 : subdomain0_outer_boundary_verts
-}
-
-# adjacent_subdomains[i] contains the indices of the subdomains sharing the
-# interface i (i.e. given by interface_def_points[i]).
-adjacent_subdomains = None
-isRichards = {
-    0: True, #
-    }
-
-viscosity = {#
-# subdom_num : viscosity
-    0 : {'wetting' :1,
-         'nonwetting': 1}, #
-}
-
-porosity = {#
-# subdom_num : porosity
-    0: 1,#
-}
-
-# Dict of the form: { subdom_num : density }
-densities = {
-    0: {'wetting': 1,  #997,
-        'nonwetting': 1}, #1225}
-}
-
-gravity_acceleration = 9.81
-
-L = {#
-# subdom_num : subdomain L for L-scheme
-    0: {'wetting' :Lw,
-         'nonwetting': Lnw},#
-}
-
-lambda_param = {#
-# subdom_num : lambda parameter for the L-scheme
-    0: {'wetting' :lambda_w,
-         'nonwetting': lambda_nw},#
-}
-
-## relative permeabilty functions on subdomain 1
-def rel_perm1w(s):
-    # relative permeabilty wetting on subdomain1
-    return s**2
-
-def rel_perm1nw(s):
-    # relative permeabilty nonwetting on subdomain1
-    return (1-s)**2
-
-_rel_perm1w = ft.partial(rel_perm1w)
-_rel_perm1nw = ft.partial(rel_perm1nw)
-
-subdomain1_rel_perm = {
-    'wetting': _rel_perm1w,#
-    'nonwetting': _rel_perm1nw
-}
-
-## dictionary of relative permeabilties on all domains.
-relative_permeability = {#
-    0: subdomain1_rel_perm,
-}
-
-# definition of the derivatives of the relative permeabilities
-# relative permeabilty functions on subdomain 1
-def rel_perm1w_prime(s):
-    # relative permeabilty on subdomain1
-    return 2*s
-
-def rel_perm1nw_prime(s):
-    # relative permeabilty on subdomain1
-    return -2*(1-s)
-
-_rel_perm1w_prime = ft.partial(rel_perm1w_prime)
-_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime)
-
-subdomain1_rel_perm_prime = {
-    'wetting': _rel_perm1w_prime,
-    'nonwetting': _rel_perm1nw_prime
-}
-
-# dictionary of relative permeabilties on all domains.
-ka_prime = {
-    0: subdomain1_rel_perm_prime,
-}
-
-
-
-def saturation(pc, index):
-    # inverse capillary pressure-saturation-relationship
-    return df.conditional(pc > 0, 1/((1 + pc)**(1/(index + 1))), 1)
-
-
-def saturation_sym(pc, index):
-    # inverse capillary pressure-saturation-relationship
-    return 1/((1 + pc)**(1/(index + 1)))
-
-
-# derivative of S-pc relationship with respect to pc. This is needed for the
-# construction of a analytic solution.
-def saturation_sym_prime(pc, index):
-    # inverse capillary pressure-saturation-relationship
-    return -1/((index+1)*(1 + pc)**((index+2)/(index+1)))
-
-
-# note that the conditional definition of S-pc in the nonsymbolic part will be
-# incorporated in the construction of the exact solution below.
-S_pc_sym = {
-    0: ft.partial(saturation_sym, index=1),
-}
-
-S_pc_sym_prime = {
-    0: ft.partial(saturation_sym_prime, index=1),
-}
-
-sat_pressure_relationship = {
-    0: ft.partial(saturation, index=1),
-}
-
-# # note that the conditional definition of S-pc in the nonsymbolic part will be
-# # incorporated in the construction of the exact solution below.
-# S_pc_sym_handle = {
-#     0: ft.partial(saturation_sym, index=1),
-# }
-#
-# S_pc_sym_prime_handle = {
-#     0: ft.partial(saturation_sym_prime, index=1),
-# }
-#
-# sat_pressure_relationship = {
-#     0: ft.partial(saturation, index=1),
-# }
-
-
-#############################################
-# Manufacture source expressions with sympy #
-#############################################
-x, y = sym.symbols('x[0], x[1]')  # needed by UFL
-t = sym.symbols('t', positive=True)
-
-epsilon_x_inner = 0.7
-epsilon_x_outer = 0.99
-epsilon_y_inner = epsilon_x_inner
-epsilon_y_outer = epsilon_x_outer
-
-def mollifier(x, epsilon):
-    """ one d mollifier """
-    out_expr = sym.exp(-1/(1-(x/epsilon)**2) + 1)
-    return out_expr
-
-mollifier_handle = ft.partial(mollifier, epsilon=epsilon_x_inner)
-
-pw_sym_x = sym.Piecewise(
-    (mollifier_handle(x), x**2 < epsilon_x_outer**2),
-    (0, True)
-)
-
-pw_sym_y = sym.Piecewise(
-    (mollifier_handle(y), y**2 < epsilon_y_outer**2),
-    (0, True)
-)
-
-def mollifier2d(x, y, epsilon):
-    """ one d mollifier """
-    out_expr = sym.exp(-1/(1-(x**2 + y**2)/epsilon**2) + 1)
-    return out_expr
-
-mollifier2d_handle = ft.partial(mollifier2d, epsilon=epsilon_x_outer)
-
-pw_sym2d_x = sym.Piecewise(
-    (mollifier2d_handle(x, y), x**2 + y**2 < epsilon_x_outer**2),
-    (0, True)
-)
-
-zero_on_epsilon_shrinking_of_subdomain = sym.Piecewise(
-    (mollifier_handle(sym.sqrt(x**2 + y**2)+2*epsilon_x_inner), ((-2*epsilon_x_inner<sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<-epsilon_x_inner))),
-    (0, ((-epsilon_x_inner<=sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<=epsilon_x_inner))),
-    (mollifier_handle(sym.sqrt(x**2 + y**2)-2*epsilon_x_inner), ((epsilon_x_inner<sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<2*epsilon_x_inner))),
-    (1, True),
-)
-
-zero_on_epsilon_shrinking_of_subdomain_x = sym.Piecewise(
-    (mollifier_handle(x+2*epsilon_x_inner), ((-2*epsilon_x_inner<x) & (x<-epsilon_x_inner))),
-    (0, ((-epsilon_x_inner<=x) & (x<=epsilon_x_inner))),
-    (mollifier_handle(x-2*epsilon_x_inner), ((epsilon_x_inner<x) & (x<2*epsilon_x_inner))),
-    (1, True),
-)
-
-zero_on_epsilon_shrinking_of_subdomain_y = sym.Piecewise(
-    (1, y<=-2*epsilon_x_inner),
-    (mollifier_handle(y+2*epsilon_x_inner), ((-2*epsilon_x_inner<y) & (y<-epsilon_x_inner))),
-    (0, ((-epsilon_x_inner<=y) & (y<=epsilon_x_inner))),
-    (mollifier_handle(y-2*epsilon_x_inner), ((epsilon_x_inner<y) & (y<2*epsilon_x_inner))),
-    (1, True),
-)
-
-zero_on_shrinking = zero_on_epsilon_shrinking_of_subdomain #zero_on_epsilon_shrinking_of_subdomain_x + zero_on_epsilon_shrinking_of_subdomain_y
-gaussian = pw_sym2d_x# pw_sym_y*pw_sym_x
-cutoff = gaussian/(gaussian + zero_on_shrinking)
-
-# # construction of differentiable characteristic function.
-# def smooth_characteristic_func_on_epsilon_shrinking_of_subdomain0(x, y, epsilon_x_inner, epsilon_y_inner, epsilon_x_outer, epsilon_y_outer):
-#     dist_to_complement_x = ft.partial(mollifier, epsilon=epsilon_x_inner)
-#     dist_to_complement_y = ft.partial(mollifier, epsilon=epsilon_y_inner)
-#     dist_to_complement = dist_to_complement_y(y)*dist_to_complement_x(x)
-#     dist_to_eps_shrinking_x = ft.partial(zero_outside_epsilon_thickening_of_subdomain, epsilon=epsilon_x_outer)
-#     dist_to_eps_shrinking_y = ft.partial(zero_outside_epsilon_thickening_of_subdomain, epsilon=epsilon_y_outer)
-#     dist_to_eps_shrinking = dist_to_eps_shrinking_y(y)*dist_to_eps_shrinking_x(x)
-#     return dist_to_complement/(dist_to_eps_shrinking + dist_to_complement)
-#
-
-# def dist_to_epsilon_thickening_of_subdomain0_complement(x, y, epsilon):
-#     """ calculates the (euklidian distance)^2 of a point x,y to the epsilon
-#         thickening of the complement of the domain.
-#     """
-#     is_inside = ((1-sym.Abs(x) > epsilon) & (1-sym.Abs(y) > epsilon))
-#     sym.Piecewise((0, is_inside))
-
-# p_e_sym = {
-#     0: {'wetting': (-3 - (1+t*t)*(1 + x*x + y*y))*cutoff,
-#         'nonwetting': (-1 -t*(1+y + x**2)**2)*cutoff},
-# }
-
-p_e_sym = {
-    0: {'wetting': -6 -(1 + x*x + y*y) + 0*t}
-        # 'nonwetting': -1 -(sym.sin(3*(1+y)/2*sym.pi)*sym.sin(5*(1+x)/2*sym.pi))**2},
-}
-print(f"\n\n\nsymbolic type is {type(p_e_sym[0]['wetting'])}\n\n\n")
-# # pw_sym_x*pw_sym_y
-# p_e_sym = {
-#     0: {'wetting': -3*pw_sym2d_x + 0*t,
-#         'nonwetting': -1*pw_sym_x*pw_sym_y+ 0*t},
-# }
-
-# p_e_sym = {
-#     0: {'wetting': -3*cutoff + 0*t,
-#         'nonwetting': -1*zero_on_shrinking+ 0*t},
-# }
-
-
-pc_e_sym = dict()
-for subdomain, isR in isRichards.items():
-    if isR:
-        pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting']})
-    else:
-        pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting']
-                                        - p_e_sym[subdomain]['wetting']})
-
-
-
-# S_pc_sym = {
-#     0: sym.Piecewise(
-#         (1, pc_e_sym[0]<= 0),
-#         (S_pc_sym_handle[0](pc_e_sym[0]), ((0<pc_e_sym[0])& (pc_e_sym[0] < 1))),
-#         (0, True)
-#         )
-# }
-#
-# S_pc_sym_prime = {
-#     0: sym.Piecewise(
-#         (S_pc_sym_prime_handle[0](pc_e_sym[0]), ((pc_e_sym[0] > 0)& (pc_e_sym[0] < 1))),
-#         (0, True)
-#         )
-# }
-
-
-symbols = {"x": x,
-           "y": y,
-           "t": t}
-
-
-
-# turn above symbolic code into exact solution for dolphin and
-# construct the rhs that matches the above exact solution.
-exact_solution_example = hlp.generate_exact_solution_expressions(
-                        symbols=symbols,
-                        isRichards=isRichards,
-                        symbolic_pressure=p_e_sym,
-                        symbolic_capillary_pressure=pc_e_sym,
-                        symbolic_S_pc_relationship=S_pc_sym,
-                        symbolic_S_pc_relationship_prime=S_pc_sym_prime,
-                        viscosity=viscosity,
-                        porosity=porosity,
-                        relative_permeability=relative_permeability,
-                        relative_permeability_prime=ka_prime,
-                        densities=densities,
-                        gravity_acceleration=gravity_acceleration,
-                        include_gravity=include_gravity,
-                        )
-source_expression = exact_solution_example['source']
-exact_solution = exact_solution_example['exact_solution']
-initial_condition = exact_solution_example['initial_condition']
-
-# Dictionary of dirichlet boundary conditions.
-dirichletBC = dict()
-# similarly to the outer boundary dictionary, if a patch has no outer boundary
-# None should be written instead of an expression.
-# This is a bit of a brainfuck:
-# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind.
-# Since a domain patch can have several disjoint outer boundary parts, the
-# expressions need to get an enumaration index which starts at 0.
-# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of
-# subdomain ind and boundary part j.
-# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting']
-# return the actual expression needed for the dirichlet condition for both
-# phases if present.
-
-# subdomain index: {outer boudary part index: {phase: expression}}
-for subdomain in isRichards.keys():
-    # if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None
-    if outer_boundary_def_points[subdomain] is None:
-        dirichletBC.update({subdomain: None})
-    else:
-        dirichletBC.update({subdomain: dict()})
-        # set the dirichlet conditions to be the same code as exact solution on
-        # the subdomain.
-        for outer_boundary_ind in outer_boundary_def_points[subdomain].keys():
-            dirichletBC[subdomain].update(
-                {outer_boundary_ind: exact_solution[subdomain]}
-                )
-
-
-for starttime in starttimes:
-    for mesh_resolution, solver_tol in resolutions.items():
-        # initialise LDD simulation class
-        simulation = ldd.LDDsimulation(
-            tol=1E-14,
-            LDDsolver_tol=solver_tol,
-            debug=debugflag,
-            max_iter_num=max_iter_num,
-            FEM_Lagrange_degree=FEM_Lagrange_degree,
-            mesh_study=mesh_study
-            )
-
-        simulation.set_parameters(use_case=use_case,
-                                  output_dir=output_string,
-                                  subdomain_def_points=subdomain_def_points,
-                                  isRichards=isRichards,
-                                  interface_def_points=interface_def_points,
-                                  outer_boundary_def_points=outer_boundary_def_points,
-                                  adjacent_subdomains=adjacent_subdomains,
-                                  mesh_resolution=mesh_resolution,
-                                  viscosity=viscosity,
-                                  porosity=porosity,
-                                  L=L,
-                                  lambda_param=lambda_param,
-                                  relative_permeability=relative_permeability,
-                                  saturation=sat_pressure_relationship,
-                                  starttime=starttime,
-                                  number_of_timesteps=number_of_timesteps,
-                                  number_of_timesteps_to_analyse=number_of_timesteps_to_analyse,
-                                  plot_timestep_every=plot_timestep_every,
-                                  timestep_size=timestep_size,
-                                  sources=source_expression,
-                                  initial_conditions=initial_condition,
-                                  dirichletBC_expression_strings=dirichletBC,
-                                  exact_solution=exact_solution,
-                                  densities=densities,
-                                  include_gravity=include_gravity,
-                                  write2file=write_to_file,
-                                  )
-
-        simulation.initialise()
-        output_dir = simulation.output_dir
-        # simulation.write_exact_solution_to_xdmf()
-        output = simulation.run(analyse_condition=analyse_condition)
-        for subdomain_index, subdomain_output in output.items():
-            mesh_h = subdomain_output['mesh_size']
-            for phase, different_errornorms in subdomain_output['errornorm'].items():
-                filename = output_dir + "subdomain{}-space-time-errornorm-{}-phase.csv".format(subdomain_index, phase)
-                # for errortype, errornorm in different_errornorms.items():
-
-                    # eocfile = open("eoc_filename", "a")
-                    # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" )
-                    # eocfile.close()
-                    # if subdomain.isRichards:mesh_h
-                data_dict = {
-                    'mesh_parameter': mesh_resolution,
-                    'mesh_h': mesh_h,
-                }
-                for error_type, errornorms in different_errornorms.items():
-                    data_dict.update(
-                        {error_type: errornorms}
-                    )
-                errors = pd.DataFrame(data_dict, index=[mesh_resolution])
-                # check if file exists
-                if os.path.isfile(filename) == True:
-                    with open(filename, 'a') as f:
-                        errors.to_csv(f, header=False, sep='\t', encoding='utf-8', index=False)
-                else:
-                    errors.to_csv(filename, sep='\t', encoding='utf-8', index=False)
diff --git a/Two-phase-Two-phase/one-patch/TP-one-patch/mesh_study/run-simulation b/Two-phase-Two-phase/one-patch/TP-one-patch/mesh_study/run-simulation
deleted file mode 100755
index 0eb497502a082a0fec07a5449b1fe946d59c8cc7..0000000000000000000000000000000000000000
--- a/Two-phase-Two-phase/one-patch/TP-one-patch/mesh_study/run-simulation
+++ /dev/null
@@ -1,16 +0,0 @@
-#!/bin/bash
-
-[ $# -eq 0 ] && { echo "Usage: $0 simulation_file [logfile_name]"; exit 1; }
-
-SIMULATION_FILE=$1
-SIMULATION=${SIMULATION_FILE%.py}
-LOGFILE_DEFAULT="$SIMULATION.log"
-
-DATE=$(date -I)
-LOGFILE=${2:-$DATE-$LOGFILE_DEFAULT}
-
-GREETING="Simulation $SIMULATION is run on $DATE by $USER"
-
-echo $GREETING
-echo "running $SIMULATION_FILE | tee $LOGFILE"
-./$SIMULATION_FILE | tee $LOGFILE
diff --git a/Two-phase-Two-phase/one-patch/TP-one-patch/mesh_study_for_fixed_timestep/TP-one-patch-mesh-study-fixed-timestep-constant-pressures.py b/Two-phase-Two-phase/one-patch/TP-one-patch/mesh_study_for_fixed_timestep/TP-one-patch-mesh-study-fixed-timestep-constant-pressures.py
deleted file mode 100755
index 3816aa6041dafdc822e600be7ba2ee2f13e2c3dc..0000000000000000000000000000000000000000
--- a/Two-phase-Two-phase/one-patch/TP-one-patch/mesh_study_for_fixed_timestep/TP-one-patch-mesh-study-fixed-timestep-constant-pressures.py
+++ /dev/null
@@ -1,490 +0,0 @@
-#!/usr/bin/python3
-import dolfin as df
-import mshr
-import numpy as np
-import sympy as sym
-import typing as tp
-import domainPatch as dp
-import LDDsimulation as ldd
-import functools as ft
-import helpers as hlp
-import datetime
-import os
-import pandas as pd
-
-date = datetime.datetime.now()
-datestr = date.strftime("%Y-%m-%d")
-#import ufl as ufl
-
-# init sympy session
-sym.init_printing()
-
-use_case = "TP-one-patch-mesh-study-fixed-timestep-constant-pressures"
-# solver_tol = 5E-9
-max_iter_num = 2000
-FEM_Lagrange_degree = 1
-mesh_study = True
-# resolutions = {128: 1e-7} #[1,2,3,4,5,10,20,40,75,100]
-resolutions = {
-                1: 1e-10,
-                2: 1e-10,
-                4: 1e-10,
-                8: 1e-10,
-                16: 1e-10,
-                32: 1e-10,
-                64: 1e-10,
-                128: 1e-10,
-                256: 1e-10,
-                512: 1e-10,
-                }
-
-############ GRID #######################
-# mesh_resolution = 20
-timestep_size = 0.01
-number_of_timesteps = 1
-plot_timestep_every = 1
-# decide how many timesteps you want analysed. Analysed means, that we write out
-# subsequent errors of the L-iteration within the timestep.
-number_of_timesteps_to_analyse = 1
-starttimes = [0.0, 0.05, 0.1, 0.7, 1.3]
-
-# starttimes = {
-#     1: 0.0
-#     2: 0.05
-#     4: 0.1
-#     8: 0.2
-#     16: 0.4
-#     32: 0.7
-#     64: 1.0
-#     128: 1.3
-# }
-
-Lw = 0.05 #/timestep_size
-Lnw=Lw
-
-lambda_w = 0
-lambda_nw = 0
-
-include_gravity = False
-debugflag = True
-analyse_condition = False
-
-if mesh_study:
-    output_string = "./output/{}-{}_timesteps{}_P{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree)
-else:
-    for tol in resolutions.values():
-        solver_tol = tol
-    output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol)
-
-# toggle what should be written to files
-if mesh_study:
-    write_to_file = {
-        'space_errornorms': True,
-        'meshes_and_markers': True,
-        'L_iterations_per_timestep': True,
-        'solutions': True,
-        'absolute_differences': True,
-        'condition_numbers': analyse_condition,
-        'subsequent_errors': True
-    }
-else:
-    write_to_file = {
-        'space_errornorms': True,
-        'meshes_and_markers': True,
-        'L_iterations_per_timestep': False,
-        'solutions': True,
-        'absolute_differences': True,
-        'condition_numbers': analyse_condition,
-        'subsequent_errors': True
-    }
-
-##### Domain and Interface ####
-# global simulation domain domain
-sub_domain0_vertices = [df.Point(-1.0, -1.0),  #
-                        df.Point(1.0, -1.0),  #
-                        df.Point(1.0, 1.0),  #
-                        df.Point(-1.0, 1.0)]
-
-subdomain0_outer_boundary_verts = {
-    0: [sub_domain0_vertices[0],
-        sub_domain0_vertices[1],
-        sub_domain0_vertices[2],
-        sub_domain0_vertices[3],
-        sub_domain0_vertices[0]]
-}
-
-# list of subdomains given by the boundary polygon vertices.
-# Subdomains are given as a list of dolfin points forming
-# a closed polygon, such that mshr.Polygon(subdomain_def_points[i]) can be used
-# to create the subdomain. subdomain_def_points[0] contains the
-# vertices of the global simulation domain and subdomain_def_points[i] contains the
-# vertices of the subdomain i.
-subdomain_def_points = [sub_domain0_vertices]
-# in the below list, index 0 corresponds to the 12 interface which has index 1
-interface_def_points = None
-
-# if a subdomain has no outer boundary write None instead, i.e.
-# i: None
-# if i is the index of the inner subdomain.
-outer_boundary_def_points = {
-    # subdomain number
-    0 : subdomain0_outer_boundary_verts
-}
-
-# adjacent_subdomains[i] contains the indices of the subdomains sharing the
-# interface i (i.e. given by interface_def_points[i]).
-adjacent_subdomains = None
-isRichards = {
-    0: False, #
-    }
-
-viscosity = {#
-# subdom_num : viscosity
-    0 : {'wetting' :1,
-         'nonwetting': 1}, #
-}
-
-porosity = {#
-# subdom_num : porosity
-    0: 1,#
-}
-
-# Dict of the form: { subdom_num : density }
-densities = {
-    0: {'wetting': 1,  #997,
-        'nonwetting': 1}, #1225}
-}
-
-gravity_acceleration = 9.81
-
-L = {#
-# subdom_num : subdomain L for L-scheme
-    0: {'wetting' :Lw,
-         'nonwetting': Lnw},#
-}
-
-lambda_param = {#
-# subdom_num : lambda parameter for the L-scheme
-    0: {'wetting' :lambda_w,
-         'nonwetting': lambda_nw},#
-}
-
-## relative permeabilty functions on subdomain 1
-def rel_perm1w(s):
-    # relative permeabilty wetting on subdomain1
-    return s**2
-
-def rel_perm1nw(s):
-    # relative permeabilty nonwetting on subdomain1
-    return (1-s)**2
-
-_rel_perm1w = ft.partial(rel_perm1w)
-_rel_perm1nw = ft.partial(rel_perm1nw)
-
-subdomain1_rel_perm = {
-    'wetting': _rel_perm1w,#
-    'nonwetting': _rel_perm1nw
-}
-
-## dictionary of relative permeabilties on all domains.
-relative_permeability = {#
-    0: subdomain1_rel_perm,
-}
-
-# definition of the derivatives of the relative permeabilities
-# relative permeabilty functions on subdomain 1
-def rel_perm1w_prime(s):
-    # relative permeabilty on subdomain1
-    return 2*s
-
-def rel_perm1nw_prime(s):
-    # relative permeabilty on subdomain1
-    return -2*(1-s)
-
-_rel_perm1w_prime = ft.partial(rel_perm1w_prime)
-_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime)
-
-subdomain1_rel_perm_prime = {
-    'wetting': _rel_perm1w_prime,
-    'nonwetting': _rel_perm1nw_prime
-}
-
-# dictionary of relative permeabilties on all domains.
-ka_prime = {
-    0: subdomain1_rel_perm_prime,
-}
-
-
-
-def saturation(pc, index):
-    # inverse capillary pressure-saturation-relationship
-    return df.conditional(pc > 0, 1/((1 + pc)**(1/(index + 1))), 1)
-
-def saturation_sym(pc, index):
-    # inverse capillary pressure-saturation-relationship
-    return 1/((1 + pc)**(1/(index + 1)))
-
-
-# derivative of S-pc relationship with respect to pc. This is needed for the
-# construction of a analytic solution.
-def saturation_sym_prime(pc, index):
-    # inverse capillary pressure-saturation-relationship
-    return -1/((index+1)*(1 + pc)**((index+2)/(index+1)))
-
-
-# def saturation(pc, index):
-#     # inverse capillary pressure-saturation-relationship
-#     return df.conditional(pc > 0, -index*pc, 1)
-#
-#
-# def saturation_sym(pc, index):
-#     # inverse capillary pressure-saturation-relationship
-#     return -index*pc
-#
-#
-# # derivative of S-pc relationship with respect to pc. This is needed for the
-# # construction of a analytic solution.
-# def saturation_sym_prime(pc, index):
-#     # inverse capillary pressure-saturation-relationship
-#     return -index
-
-
-# note that the conditional definition of S-pc in the nonsymbolic part will be
-# incorporated in the construction of the exact solution below.
-S_pc_sym = {
-    0: ft.partial(saturation_sym, index=1),
-}
-
-S_pc_sym_prime = {
-    0: ft.partial(saturation_sym_prime, index=1),
-}
-
-sat_pressure_relationship = {
-    0: ft.partial(saturation, index=1),
-}
-
-
-#############################################
-# Manufacture source expressions with sympy #
-#############################################
-x, y = sym.symbols('x[0], x[1]')  # needed by UFL
-t = sym.symbols('t', positive=True)
-
-epsilon_x_inner = 0.7
-epsilon_x_outer = 0.99
-epsilon_y_inner = epsilon_x_inner
-epsilon_y_outer = epsilon_x_outer
-
-def mollifier(x, epsilon):
-    """ one d mollifier """
-    out_expr = sym.exp(-1/(1-(x/epsilon)**2) + 1)
-    return out_expr
-
-mollifier_handle = ft.partial(mollifier, epsilon=epsilon_x_inner)
-
-pw_sym_x = sym.Piecewise(
-    (mollifier_handle(x), x**2 < epsilon_x_outer**2),
-    (0, True)
-)
-pw_sym_y = sym.Piecewise(
-    (mollifier_handle(y), y**2 < epsilon_y_outer**2),
-    (0, True)
-)
-
-def mollifier2d(x, y, epsilon):
-    """ one d mollifier """
-    out_expr = sym.exp(-1/(1-(x**2 + y**2)/epsilon**2) + 1)
-    return out_expr
-
-mollifier2d_handle = ft.partial(mollifier2d, epsilon=epsilon_x_outer)
-
-pw_sym2d_x = sym.Piecewise(
-    (mollifier2d_handle(x, y), x**2 + y**2 < epsilon_x_outer**2),
-    (0, True)
-)
-
-zero_on_epsilon_shrinking_of_subdomain = sym.Piecewise(
-    (mollifier_handle(sym.sqrt(x**2 + y**2)+2*epsilon_x_inner), ((-2*epsilon_x_inner<sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<-epsilon_x_inner))),
-    (0, ((-epsilon_x_inner<=sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<=epsilon_x_inner))),
-    (mollifier_handle(sym.sqrt(x**2 + y**2)-2*epsilon_x_inner), ((epsilon_x_inner<sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<2*epsilon_x_inner))),
-    (1, True),
-)
-
-zero_on_epsilon_shrinking_of_subdomain_x = sym.Piecewise(
-    (mollifier_handle(x+2*epsilon_x_inner), ((-2*epsilon_x_inner<x) & (x<-epsilon_x_inner))),
-    (0, ((-epsilon_x_inner<=x) & (x<=epsilon_x_inner))),
-    (mollifier_handle(x-2*epsilon_x_inner), ((epsilon_x_inner<x) & (x<2*epsilon_x_inner))),
-    (1, True),
-)
-
-zero_on_epsilon_shrinking_of_subdomain_y = sym.Piecewise(
-    (1, y<=-2*epsilon_x_inner),
-    (mollifier_handle(y+2*epsilon_x_inner), ((-2*epsilon_x_inner<y) & (y<-epsilon_x_inner))),
-    (0, ((-epsilon_x_inner<=y) & (y<=epsilon_x_inner))),
-    (mollifier_handle(y-2*epsilon_x_inner), ((epsilon_x_inner<y) & (y<2*epsilon_x_inner))),
-    (1, True),
-)
-
-zero_on_shrinking = zero_on_epsilon_shrinking_of_subdomain #zero_on_epsilon_shrinking_of_subdomain_x + zero_on_epsilon_shrinking_of_subdomain_y
-gaussian = pw_sym2d_x# pw_sym_y*pw_sym_x
-cutoff = gaussian/(gaussian + zero_on_shrinking)
-
-# # construction of differentiable characteristic function.
-# def smooth_characteristic_func_on_epsilon_shrinking_of_subdomain0(x, y, epsilon_x_inner, epsilon_y_inner, epsilon_x_outer, epsilon_y_outer):
-#     dist_to_complement_x = ft.partial(mollifier, epsilon=epsilon_x_inner)
-#     dist_to_complement_y = ft.partial(mollifier, epsilon=epsilon_y_inner)
-#     dist_to_complement = dist_to_complement_y(y)*dist_to_complement_x(x)
-#     dist_to_eps_shrinking_x = ft.partial(zero_outside_epsilon_thickening_of_subdomain, epsilon=epsilon_x_outer)
-#     dist_to_eps_shrinking_y = ft.partial(zero_outside_epsilon_thickening_of_subdomain, epsilon=epsilon_y_outer)
-#     dist_to_eps_shrinking = dist_to_eps_shrinking_y(y)*dist_to_eps_shrinking_x(x)
-#     return dist_to_complement/(dist_to_eps_shrinking + dist_to_complement)
-#
-
-# def dist_to_epsilon_thickening_of_subdomain0_complement(x, y, epsilon):
-#     """ calculates the (euklidian distance)^2 of a point x,y to the epsilon
-#         thickening of the complement of the domain.
-#     """
-#     is_inside = ((1-sym.Abs(x) > epsilon) & (1-sym.Abs(y) > epsilon))
-#     sym.Piecewise((0, is_inside))
-
-p_e_sym = {
-    0: {'wetting': -3 +0.0*t,  #*cutoff,
-        'nonwetting': -1 +0.0*t},  #*cutoff},
-}
-
-pc_e_sym = dict()
-for subdomain, isR in isRichards.items():
-    if isR:
-        pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting']})
-    else:
-        pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting']
-                                        - p_e_sym[subdomain]['wetting']})
-
-
-symbols = {"x": x,
-           "y": y,
-           "t": t}
-# turn above symbolic code into exact solution for dolphin and
-# construct the rhs that matches the above exact solution.
-exact_solution_example = hlp.generate_exact_solution_expressions(
-                        symbols=symbols,
-                        isRichards=isRichards,
-                        symbolic_pressure=p_e_sym,
-                        symbolic_capillary_pressure=pc_e_sym,
-                        saturation_pressure_relationship=S_pc_sym,
-                        saturation_pressure_relationship_prime=S_pc_sym_prime,
-                        viscosity=viscosity,
-                        porosity=porosity,
-                        relative_permeability=relative_permeability,
-                        relative_permeability_prime=ka_prime,
-                        densities=densities,
-                        gravity_acceleration=gravity_acceleration,
-                        include_gravity=include_gravity,
-                        )
-source_expression = exact_solution_example['source']
-exact_solution = exact_solution_example['exact_solution']
-initial_condition = exact_solution_example['initial_condition']
-
-# Dictionary of dirichlet boundary conditions.
-dirichletBC = dict()
-# similarly to the outer boundary dictionary, if a patch has no outer boundary
-# None should be written instead of an expression.
-# This is a bit of a brainfuck:
-# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind.
-# Since a domain patch can have several disjoint outer boundary parts, the
-# expressions need to get an enumaration index which starts at 0.
-# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of
-# subdomain ind and boundary part j.
-# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting']
-# return the actual expression needed for the dirichlet condition for both
-# phases if present.
-
-# subdomain index: {outer boudary part index: {phase: expression}}
-for subdomain in isRichards.keys():
-    # if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None
-    if outer_boundary_def_points[subdomain] is None:
-        dirichletBC.update({subdomain: None})
-    else:
-        dirichletBC.update({subdomain: dict()})
-        # set the dirichlet conditions to be the same code as exact solution on
-        # the subdomain.
-        for outer_boundary_ind in outer_boundary_def_points[subdomain].keys():
-            dirichletBC[subdomain].update(
-                {outer_boundary_ind: exact_solution[subdomain]}
-                )
-
-
-# def saturation(pressure, subdomain_index):
-#     # inverse capillary pressure-saturation-relationship
-#     return df.conditional(pressure < 0, 1/((1 - pressure)**(1/(subdomain_index + 1))), 1)
-#
-# sa
-for starttime in starttimes:
-    for mesh_resolution, solver_tol in resolutions.items():
-        # initialise LDD simulation class
-        simulation = ldd.LDDsimulation(
-            tol=1E-14,
-            LDDsolver_tol=solver_tol,
-            debug=debugflag,
-            max_iter_num=max_iter_num,
-            FEM_Lagrange_degree=FEM_Lagrange_degree,
-            mesh_study=mesh_study
-            )
-
-        simulation.set_parameters(use_case=use_case,
-                                  output_dir=output_string,
-                                  subdomain_def_points=subdomain_def_points,
-                                  isRichards=isRichards,
-                                  interface_def_points=interface_def_points,
-                                  outer_boundary_def_points=outer_boundary_def_points,
-                                  adjacent_subdomains=adjacent_subdomains,
-                                  mesh_resolution=mesh_resolution,
-                                  viscosity=viscosity,
-                                  porosity=porosity,
-                                  L=L,
-                                  lambda_param=lambda_param,
-                                  relative_permeability=relative_permeability,
-                                  saturation=sat_pressure_relationship,
-                                  starttime=starttime,
-                                  number_of_timesteps=number_of_timesteps,
-                                  number_of_timesteps_to_analyse=number_of_timesteps_to_analyse,
-                                  plot_timestep_every=plot_timestep_every,
-                                  timestep_size=timestep_size,
-                                  sources=source_expression,
-                                  initial_conditions=initial_condition,
-                                  dirichletBC_expression_strings=dirichletBC,
-                                  exact_solution=exact_solution,
-                                  densities=densities,
-                                  include_gravity=include_gravity,
-                                  write2file=write_to_file,
-                                  )
-
-        simulation.initialise()
-        output_dir = simulation.output_dir
-        # simulation.write_exact_solution_to_xdmf()
-        output = simulation.run(analyse_condition=analyse_condition)
-        for subdomain_index, subdomain_output in output.items():
-            mesh_h = subdomain_output['mesh_size']
-            for phase, different_errornorms in subdomain_output['errornorm'].items():
-                filename = output_dir + "subdomain{}-space-time-errornorm-{}-phase.csv".format(subdomain_index, phase)
-                # for errortype, errornorm in different_errornorms.items():
-
-                    # eocfile = open("eoc_filename", "a")
-                    # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" )
-                    # eocfile.close()
-                    # if subdomain.isRichards:mesh_h
-                data_dict = {
-                    'mesh_parameter': mesh_resolution,
-                    'mesh_h': mesh_h,
-                }
-                for error_type, errornorms in different_errornorms.items():
-                    data_dict.update(
-                        {error_type: errornorms}
-                    )
-                errors = pd.DataFrame(data_dict, index=[mesh_resolution])
-                # check if file exists
-                if os.path.isfile(filename) == True:
-                    with open(filename, 'a') as f:
-                        errors.to_csv(f, header=False, sep='\t', encoding='utf-8', index=False)
-                else:
-                    errors.to_csv(filename, sep='\t', encoding='utf-8', index=False)
diff --git a/Two-phase-Two-phase/one-patch/TP-one-patch/mesh_study_for_fixed_timestep/TP-one-patch-mesh-study-fixed-timestep-nonwetting0.py b/Two-phase-Two-phase/one-patch/TP-one-patch/mesh_study_for_fixed_timestep/TP-one-patch-mesh-study-fixed-timestep-nonwetting0.py
deleted file mode 100755
index f15efcf437c5a960dff1b9133ba6c4f36b30f844..0000000000000000000000000000000000000000
--- a/Two-phase-Two-phase/one-patch/TP-one-patch/mesh_study_for_fixed_timestep/TP-one-patch-mesh-study-fixed-timestep-nonwetting0.py
+++ /dev/null
@@ -1,491 +0,0 @@
-#!/usr/bin/python3
-import dolfin as df
-import mshr
-import numpy as np
-import sympy as sym
-import typing as tp
-import domainPatch as dp
-import LDDsimulation as ldd
-import functools as ft
-import helpers as hlp
-import datetime
-import os
-import pandas as pd
-
-date = datetime.datetime.now()
-datestr = date.strftime("%Y-%m-%d")
-#import ufl as ufl
-
-# init sympy session
-sym.init_printing()
-
-use_case = "TP-one-patch-mesh-study-fixed-timestep-nonwetting0"
-# solver_tol = 5E-9
-max_iter_num = 2000
-FEM_Lagrange_degree = 1
-mesh_study = True
-# resolutions = {128: 1e-7} #[1,2,3,4,5,10,20,40,75,100]
-resolutions = {
-                1: 1e-10,
-                2: 1e-10,
-                4: 1e-10,
-                8: 1e-10,
-                16: 1e-10,
-                32: 1e-10,
-                64: 1e-10,
-                128: 1e-10,
-                256: 1e-10,
-                # 512: 1e-10,
-                }
-
-############ GRID #######################
-# mesh_resolution = 20
-timestep_size = 0.01
-number_of_timesteps = 1
-plot_timestep_every = 1
-# decide how many timesteps you want analysed. Analysed means, that we write out
-# subsequent errors of the L-iteration within the timestep.
-number_of_timesteps_to_analyse = 1
-# starttimes = [0.0, 0.05, 0.1, 0.7, 1.3]
-starttimes = [0.7]
-
-# starttimes = {
-#     1: 0.0
-#     2: 0.05
-#     4: 0.1
-#     8: 0.2
-#     16: 0.4
-#     32: 0.7
-#     64: 1.0
-#     128: 1.3
-# }
-
-Lw = 0.05 #/timestep_size
-Lnw=Lw
-
-lambda_w = 0
-lambda_nw = 0
-
-include_gravity = False
-debugflag = True
-analyse_condition = False
-
-if mesh_study:
-    output_string = "./output/{}-{}_timesteps{}_P{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree)
-else:
-    for tol in resolutions.values():
-        solver_tol = tol
-    output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol)
-
-# toggle what should be written to files
-if mesh_study:
-    write_to_file = {
-        'space_errornorms': True,
-        'meshes_and_markers': True,
-        'L_iterations_per_timestep': True,
-        'solutions': True,
-        'absolute_differences': True,
-        'condition_numbers': analyse_condition,
-        'subsequent_errors': True
-    }
-else:
-    write_to_file = {
-        'space_errornorms': True,
-        'meshes_and_markers': True,
-        'L_iterations_per_timestep': False,
-        'solutions': True,
-        'absolute_differences': True,
-        'condition_numbers': analyse_condition,
-        'subsequent_errors': True
-    }
-
-##### Domain and Interface ####
-# global simulation domain domain
-sub_domain0_vertices = [df.Point(-1.0, -1.0),  #
-                        df.Point(1.0, -1.0),  #
-                        df.Point(1.0, 1.0),  #
-                        df.Point(-1.0, 1.0)]
-
-subdomain0_outer_boundary_verts = {
-    0: [sub_domain0_vertices[0],
-        sub_domain0_vertices[1],
-        sub_domain0_vertices[2],
-        sub_domain0_vertices[3],
-        sub_domain0_vertices[0]]
-}
-
-# list of subdomains given by the boundary polygon vertices.
-# Subdomains are given as a list of dolfin points forming
-# a closed polygon, such that mshr.Polygon(subdomain_def_points[i]) can be used
-# to create the subdomain. subdomain_def_points[0] contains the
-# vertices of the global simulation domain and subdomain_def_points[i] contains the
-# vertices of the subdomain i.
-subdomain_def_points = [sub_domain0_vertices]
-# in the below list, index 0 corresponds to the 12 interface which has index 1
-interface_def_points = None
-
-# if a subdomain has no outer boundary write None instead, i.e.
-# i: None
-# if i is the index of the inner subdomain.
-outer_boundary_def_points = {
-    # subdomain number
-    0 : subdomain0_outer_boundary_verts
-}
-
-# adjacent_subdomains[i] contains the indices of the subdomains sharing the
-# interface i (i.e. given by interface_def_points[i]).
-adjacent_subdomains = None
-isRichards = {
-    0: False, #
-    }
-
-viscosity = {#
-# subdom_num : viscosity
-    0 : {'wetting' :1,
-         'nonwetting': 1}, #
-}
-
-porosity = {#
-# subdom_num : porosity
-    0: 1,#
-}
-
-# Dict of the form: { subdom_num : density }
-densities = {
-    0: {'wetting': 1,  #997,
-        'nonwetting': 1}, #1225}
-}
-
-gravity_acceleration = 9.81
-
-L = {#
-# subdom_num : subdomain L for L-scheme
-    0: {'wetting' :Lw,
-         'nonwetting': Lnw},#
-}
-
-lambda_param = {#
-# subdom_num : lambda parameter for the L-scheme
-    0: {'wetting' :lambda_w,
-         'nonwetting': lambda_nw},#
-}
-
-## relative permeabilty functions on subdomain 1
-def rel_perm1w(s):
-    # relative permeabilty wetting on subdomain1
-    return s**2
-
-def rel_perm1nw(s):
-    # relative permeabilty nonwetting on subdomain1
-    return (1-s)**2
-
-_rel_perm1w = ft.partial(rel_perm1w)
-_rel_perm1nw = ft.partial(rel_perm1nw)
-
-subdomain1_rel_perm = {
-    'wetting': _rel_perm1w,#
-    'nonwetting': _rel_perm1nw
-}
-
-## dictionary of relative permeabilties on all domains.
-relative_permeability = {#
-    0: subdomain1_rel_perm,
-}
-
-# definition of the derivatives of the relative permeabilities
-# relative permeabilty functions on subdomain 1
-def rel_perm1w_prime(s):
-    # relative permeabilty on subdomain1
-    return 2*s
-
-def rel_perm1nw_prime(s):
-    # relative permeabilty on subdomain1
-    return -2*(1-s)
-
-_rel_perm1w_prime = ft.partial(rel_perm1w_prime)
-_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime)
-
-subdomain1_rel_perm_prime = {
-    'wetting': _rel_perm1w_prime,
-    'nonwetting': _rel_perm1nw_prime
-}
-
-# dictionary of relative permeabilties on all domains.
-ka_prime = {
-    0: subdomain1_rel_perm_prime,
-}
-
-
-
-def saturation(pc, index):
-    # inverse capillary pressure-saturation-relationship
-    return df.conditional(pc > 0, 1/((1 + pc)**(1/(index + 1))), 1)
-
-def saturation_sym(pc, index):
-    # inverse capillary pressure-saturation-relationship
-    return 1/((1 + pc)**(1/(index + 1)))
-
-
-# derivative of S-pc relationship with respect to pc. This is needed for the
-# construction of a analytic solution.
-def saturation_sym_prime(pc, index):
-    # inverse capillary pressure-saturation-relationship
-    return -1/((index+1)*(1 + pc)**((index+2)/(index+1)))
-
-
-# def saturation(pc, index):
-#     # inverse capillary pressure-saturation-relationship
-#     return df.conditional(pc > 0, -index*pc, 1)
-#
-#
-# def saturation_sym(pc, index):
-#     # inverse capillary pressure-saturation-relationship
-#     return -index*pc
-#
-#
-# # derivative of S-pc relationship with respect to pc. This is needed for the
-# # construction of a analytic solution.
-# def saturation_sym_prime(pc, index):
-#     # inverse capillary pressure-saturation-relationship
-#     return -index
-
-
-# note that the conditional definition of S-pc in the nonsymbolic part will be
-# incorporated in the construction of the exact solution below.
-S_pc_sym = {
-    0: ft.partial(saturation_sym, index=1),
-}
-
-S_pc_sym_prime = {
-    0: ft.partial(saturation_sym_prime, index=1),
-}
-
-sat_pressure_relationship = {
-    0: ft.partial(saturation, index=1),
-}
-
-
-#############################################
-# Manufacture source expressions with sympy #
-#############################################
-x, y = sym.symbols('x[0], x[1]')  # needed by UFL
-t = sym.symbols('t', positive=True)
-
-epsilon_x_inner = 0.7
-epsilon_x_outer = 0.99
-epsilon_y_inner = epsilon_x_inner
-epsilon_y_outer = epsilon_x_outer
-
-def mollifier(x, epsilon):
-    """ one d mollifier """
-    out_expr = sym.exp(-1/(1-(x/epsilon)**2) + 1)
-    return out_expr
-
-mollifier_handle = ft.partial(mollifier, epsilon=epsilon_x_inner)
-
-pw_sym_x = sym.Piecewise(
-    (mollifier_handle(x), x**2 < epsilon_x_outer**2),
-    (0, True)
-)
-pw_sym_y = sym.Piecewise(
-    (mollifier_handle(y), y**2 < epsilon_y_outer**2),
-    (0, True)
-)
-
-def mollifier2d(x, y, epsilon):
-    """ one d mollifier """
-    out_expr = sym.exp(-1/(1-(x**2 + y**2)/epsilon**2) + 1)
-    return out_expr
-
-mollifier2d_handle = ft.partial(mollifier2d, epsilon=epsilon_x_outer)
-
-pw_sym2d_x = sym.Piecewise(
-    (mollifier2d_handle(x, y), x**2 + y**2 < epsilon_x_outer**2),
-    (0, True)
-)
-
-zero_on_epsilon_shrinking_of_subdomain = sym.Piecewise(
-    (mollifier_handle(sym.sqrt(x**2 + y**2)+2*epsilon_x_inner), ((-2*epsilon_x_inner<sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<-epsilon_x_inner))),
-    (0, ((-epsilon_x_inner<=sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<=epsilon_x_inner))),
-    (mollifier_handle(sym.sqrt(x**2 + y**2)-2*epsilon_x_inner), ((epsilon_x_inner<sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<2*epsilon_x_inner))),
-    (1, True),
-)
-
-zero_on_epsilon_shrinking_of_subdomain_x = sym.Piecewise(
-    (mollifier_handle(x+2*epsilon_x_inner), ((-2*epsilon_x_inner<x) & (x<-epsilon_x_inner))),
-    (0, ((-epsilon_x_inner<=x) & (x<=epsilon_x_inner))),
-    (mollifier_handle(x-2*epsilon_x_inner), ((epsilon_x_inner<x) & (x<2*epsilon_x_inner))),
-    (1, True),
-)
-
-zero_on_epsilon_shrinking_of_subdomain_y = sym.Piecewise(
-    (1, y<=-2*epsilon_x_inner),
-    (mollifier_handle(y+2*epsilon_x_inner), ((-2*epsilon_x_inner<y) & (y<-epsilon_x_inner))),
-    (0, ((-epsilon_x_inner<=y) & (y<=epsilon_x_inner))),
-    (mollifier_handle(y-2*epsilon_x_inner), ((epsilon_x_inner<y) & (y<2*epsilon_x_inner))),
-    (1, True),
-)
-
-zero_on_shrinking = zero_on_epsilon_shrinking_of_subdomain #zero_on_epsilon_shrinking_of_subdomain_x + zero_on_epsilon_shrinking_of_subdomain_y
-gaussian = pw_sym2d_x# pw_sym_y*pw_sym_x
-cutoff = gaussian/(gaussian + zero_on_shrinking)
-
-# # construction of differentiable characteristic function.
-# def smooth_characteristic_func_on_epsilon_shrinking_of_subdomain0(x, y, epsilon_x_inner, epsilon_y_inner, epsilon_x_outer, epsilon_y_outer):
-#     dist_to_complement_x = ft.partial(mollifier, epsilon=epsilon_x_inner)
-#     dist_to_complement_y = ft.partial(mollifier, epsilon=epsilon_y_inner)
-#     dist_to_complement = dist_to_complement_y(y)*dist_to_complement_x(x)
-#     dist_to_eps_shrinking_x = ft.partial(zero_outside_epsilon_thickening_of_subdomain, epsilon=epsilon_x_outer)
-#     dist_to_eps_shrinking_y = ft.partial(zero_outside_epsilon_thickening_of_subdomain, epsilon=epsilon_y_outer)
-#     dist_to_eps_shrinking = dist_to_eps_shrinking_y(y)*dist_to_eps_shrinking_x(x)
-#     return dist_to_complement/(dist_to_eps_shrinking + dist_to_complement)
-#
-
-# def dist_to_epsilon_thickening_of_subdomain0_complement(x, y, epsilon):
-#     """ calculates the (euklidian distance)^2 of a point x,y to the epsilon
-#         thickening of the complement of the domain.
-#     """
-#     is_inside = ((1-sym.Abs(x) > epsilon) & (1-sym.Abs(y) > epsilon))
-#     sym.Piecewise((0, is_inside))
-
-p_e_sym = {
-    0: {'wetting': (-7 - (1+t*t)*(1 + x*x + y*y)),  #*cutoff,
-        'nonwetting': 0.0*t},  #*cutoff},
-}
-
-pc_e_sym = dict()
-for subdomain, isR in isRichards.items():
-    if isR:
-        pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting']})
-    else:
-        pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting']
-                                        - p_e_sym[subdomain]['wetting']})
-
-
-symbols = {"x": x,
-           "y": y,
-           "t": t}
-# turn above symbolic code into exact solution for dolphin and
-# construct the rhs that matches the above exact solution.
-exact_solution_example = hlp.generate_exact_solution_expressions(
-                        symbols=symbols,
-                        isRichards=isRichards,
-                        symbolic_pressure=p_e_sym,
-                        symbolic_capillary_pressure=pc_e_sym,
-                        saturation_pressure_relationship=S_pc_sym,
-                        saturation_pressure_relationship_prime=S_pc_sym_prime,
-                        viscosity=viscosity,
-                        porosity=porosity,
-                        relative_permeability=relative_permeability,
-                        relative_permeability_prime=ka_prime,
-                        densities=densities,
-                        gravity_acceleration=gravity_acceleration,
-                        include_gravity=include_gravity,
-                        )
-source_expression = exact_solution_example['source']
-exact_solution = exact_solution_example['exact_solution']
-initial_condition = exact_solution_example['initial_condition']
-
-# Dictionary of dirichlet boundary conditions.
-dirichletBC = dict()
-# similarly to the outer boundary dictionary, if a patch has no outer boundary
-# None should be written instead of an expression.
-# This is a bit of a brainfuck:
-# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind.
-# Since a domain patch can have several disjoint outer boundary parts, the
-# expressions need to get an enumaration index which starts at 0.
-# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of
-# subdomain ind and boundary part j.
-# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting']
-# return the actual expression needed for the dirichlet condition for both
-# phases if present.
-
-# subdomain index: {outer boudary part index: {phase: expression}}
-for subdomain in isRichards.keys():
-    # if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None
-    if outer_boundary_def_points[subdomain] is None:
-        dirichletBC.update({subdomain: None})
-    else:
-        dirichletBC.update({subdomain: dict()})
-        # set the dirichlet conditions to be the same code as exact solution on
-        # the subdomain.
-        for outer_boundary_ind in outer_boundary_def_points[subdomain].keys():
-            dirichletBC[subdomain].update(
-                {outer_boundary_ind: exact_solution[subdomain]}
-                )
-
-
-# def saturation(pressure, subdomain_index):
-#     # inverse capillary pressure-saturation-relationship
-#     return df.conditional(pressure < 0, 1/((1 - pressure)**(1/(subdomain_index + 1))), 1)
-#
-# sa
-for starttime in starttimes:
-    for mesh_resolution, solver_tol in resolutions.items():
-        # initialise LDD simulation class
-        simulation = ldd.LDDsimulation(
-            tol=1E-14,
-            LDDsolver_tol=solver_tol,
-            debug=debugflag,
-            max_iter_num=max_iter_num,
-            FEM_Lagrange_degree=FEM_Lagrange_degree,
-            mesh_study=mesh_study
-            )
-
-        simulation.set_parameters(use_case=use_case,
-                                  output_dir=output_string,
-                                  subdomain_def_points=subdomain_def_points,
-                                  isRichards=isRichards,
-                                  interface_def_points=interface_def_points,
-                                  outer_boundary_def_points=outer_boundary_def_points,
-                                  adjacent_subdomains=adjacent_subdomains,
-                                  mesh_resolution=mesh_resolution,
-                                  viscosity=viscosity,
-                                  porosity=porosity,
-                                  L=L,
-                                  lambda_param=lambda_param,
-                                  relative_permeability=relative_permeability,
-                                  saturation=sat_pressure_relationship,
-                                  starttime=starttime,
-                                  number_of_timesteps=number_of_timesteps,
-                                  number_of_timesteps_to_analyse=number_of_timesteps_to_analyse,
-                                  plot_timestep_every=plot_timestep_every,
-                                  timestep_size=timestep_size,
-                                  sources=source_expression,
-                                  initial_conditions=initial_condition,
-                                  dirichletBC_expression_strings=dirichletBC,
-                                  exact_solution=exact_solution,
-                                  densities=densities,
-                                  include_gravity=include_gravity,
-                                  write2file=write_to_file,
-                                  )
-
-        simulation.initialise()
-        output_dir = simulation.output_dir
-        # simulation.write_exact_solution_to_xdmf()
-        output = simulation.run(analyse_condition=analyse_condition)
-        for subdomain_index, subdomain_output in output.items():
-            mesh_h = subdomain_output['mesh_size']
-            for phase, different_errornorms in subdomain_output['errornorm'].items():
-                filename = output_dir + "subdomain{}-space-time-errornorm-{}-phase.csv".format(subdomain_index, phase)
-                # for errortype, errornorm in different_errornorms.items():
-
-                    # eocfile = open("eoc_filename", "a")
-                    # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" )
-                    # eocfile.close()
-                    # if subdomain.isRichards:mesh_h
-                data_dict = {
-                    'mesh_parameter': mesh_resolution,
-                    'mesh_h': mesh_h,
-                }
-                for error_type, errornorms in different_errornorms.items():
-                    data_dict.update(
-                        {error_type: errornorms}
-                    )
-                errors = pd.DataFrame(data_dict, index=[mesh_resolution])
-                # check if file exists
-                if os.path.isfile(filename) == True:
-                    with open(filename, 'a') as f:
-                        errors.to_csv(f, header=False, sep='\t', encoding='utf-8', index=False)
-                else:
-                    errors.to_csv(filename, sep='\t', encoding='utf-8', index=False)
diff --git a/Two-phase-Two-phase/one-patch/TP-one-patch/mesh_study_for_fixed_timestep/TP-one-patch-mesh-study-fixed-timestep-wetting0.py b/Two-phase-Two-phase/one-patch/TP-one-patch/mesh_study_for_fixed_timestep/TP-one-patch-mesh-study-fixed-timestep-wetting0.py
deleted file mode 100755
index 9821788e1557ed8c15233d9efe9b1941cb129e7b..0000000000000000000000000000000000000000
--- a/Two-phase-Two-phase/one-patch/TP-one-patch/mesh_study_for_fixed_timestep/TP-one-patch-mesh-study-fixed-timestep-wetting0.py
+++ /dev/null
@@ -1,490 +0,0 @@
-#!/usr/bin/python3
-import dolfin as df
-import mshr
-import numpy as np
-import sympy as sym
-import typing as tp
-import domainPatch as dp
-import LDDsimulation as ldd
-import functools as ft
-import helpers as hlp
-import datetime
-import os
-import pandas as pd
-
-date = datetime.datetime.now()
-datestr = date.strftime("%Y-%m-%d")
-#import ufl as ufl
-
-# init sympy session
-sym.init_printing()
-
-use_case = "TP-one-patch-mesh-study-fixed-timestep-wetting-constantexi"
-# solver_tol = 5E-9
-max_iter_num = 2000
-FEM_Lagrange_degree = 1
-mesh_study = True
-# resolutions = {128: 1e-7} #[1,2,3,4,5,10,20,40,75,100]
-resolutions = {
-                1: 1e-10,
-                2: 1e-10,
-                4: 1e-10,
-                8: 1e-10,
-                16: 1e-10,
-                32: 1e-10,
-                64: 1e-10,
-                128: 1e-10,
-                256: 1e-10,
-                512: 1e-10,
-                }
-
-############ GRID #######################
-# mesh_resolution = 20
-timestep_size = 0.01
-number_of_timesteps = 1
-plot_timestep_every = 1
-# decide how many timesteps you want analysed. Analysed means, that we write out
-# subsequent errors of the L-iteration within the timestep.
-number_of_timesteps_to_analyse = 1
-starttimes = [0.0, 0.05, 0.1, 0.7, 1.3]
-
-# starttimes = {
-#     1: 0.0
-#     2: 0.05
-#     4: 0.1
-#     8: 0.2
-#     16: 0.4
-#     32: 0.7
-#     64: 1.0
-#     128: 1.3
-# }
-
-Lw = 0.05 #/timestep_size
-Lnw=Lw
-
-lambda_w = 0
-lambda_nw = 0
-
-include_gravity = False
-debugflag = True
-analyse_condition = False
-
-if mesh_study:
-    output_string = "./output/{}-{}_timesteps{}_P{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree)
-else:
-    for tol in resolutions.values():
-        solver_tol = tol
-    output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol)
-
-# toggle what should be written to files
-if mesh_study:
-    write_to_file = {
-        'space_errornorms': True,
-        'meshes_and_markers': True,
-        'L_iterations_per_timestep': True,
-        'solutions': True,
-        'absolute_differences': True,
-        'condition_numbers': analyse_condition,
-        'subsequent_errors': True
-    }
-else:
-    write_to_file = {
-        'space_errornorms': True,
-        'meshes_and_markers': True,
-        'L_iterations_per_timestep': False,
-        'solutions': True,
-        'absolute_differences': True,
-        'condition_numbers': analyse_condition,
-        'subsequent_errors': True
-    }
-
-##### Domain and Interface ####
-# global simulation domain domain
-sub_domain0_vertices = [df.Point(-1.0, -1.0),  #
-                        df.Point(1.0, -1.0),  #
-                        df.Point(1.0, 1.0),  #
-                        df.Point(-1.0, 1.0)]
-
-subdomain0_outer_boundary_verts = {
-    0: [sub_domain0_vertices[0],
-        sub_domain0_vertices[1],
-        sub_domain0_vertices[2],
-        sub_domain0_vertices[3],
-        sub_domain0_vertices[0]]
-}
-
-# list of subdomains given by the boundary polygon vertices.
-# Subdomains are given as a list of dolfin points forming
-# a closed polygon, such that mshr.Polygon(subdomain_def_points[i]) can be used
-# to create the subdomain. subdomain_def_points[0] contains the
-# vertices of the global simulation domain and subdomain_def_points[i] contains the
-# vertices of the subdomain i.
-subdomain_def_points = [sub_domain0_vertices]
-# in the below list, index 0 corresponds to the 12 interface which has index 1
-interface_def_points = None
-
-# if a subdomain has no outer boundary write None instead, i.e.
-# i: None
-# if i is the index of the inner subdomain.
-outer_boundary_def_points = {
-    # subdomain number
-    0 : subdomain0_outer_boundary_verts
-}
-
-# adjacent_subdomains[i] contains the indices of the subdomains sharing the
-# interface i (i.e. given by interface_def_points[i]).
-adjacent_subdomains = None
-isRichards = {
-    0: False, #
-    }
-
-viscosity = {#
-# subdom_num : viscosity
-    0 : {'wetting' :1,
-         'nonwetting': 1}, #
-}
-
-porosity = {#
-# subdom_num : porosity
-    0: 1,#
-}
-
-# Dict of the form: { subdom_num : density }
-densities = {
-    0: {'wetting': 1,  #997,
-        'nonwetting': 1}, #1225}
-}
-
-gravity_acceleration = 9.81
-
-L = {#
-# subdom_num : subdomain L for L-scheme
-    0: {'wetting' :Lw,
-         'nonwetting': Lnw},#
-}
-
-lambda_param = {#
-# subdom_num : lambda parameter for the L-scheme
-    0: {'wetting' :lambda_w,
-         'nonwetting': lambda_nw},#
-}
-
-## relative permeabilty functions on subdomain 1
-def rel_perm1w(s):
-    # relative permeabilty wetting on subdomain1
-    return s**2
-
-def rel_perm1nw(s):
-    # relative permeabilty nonwetting on subdomain1
-    return (1-s)**2
-
-_rel_perm1w = ft.partial(rel_perm1w)
-_rel_perm1nw = ft.partial(rel_perm1nw)
-
-subdomain1_rel_perm = {
-    'wetting': _rel_perm1w,#
-    'nonwetting': _rel_perm1nw
-}
-
-## dictionary of relative permeabilties on all domains.
-relative_permeability = {#
-    0: subdomain1_rel_perm,
-}
-
-# definition of the derivatives of the relative permeabilities
-# relative permeabilty functions on subdomain 1
-def rel_perm1w_prime(s):
-    # relative permeabilty on subdomain1
-    return 2*s
-
-def rel_perm1nw_prime(s):
-    # relative permeabilty on subdomain1
-    return -2*(1-s)
-
-_rel_perm1w_prime = ft.partial(rel_perm1w_prime)
-_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime)
-
-subdomain1_rel_perm_prime = {
-    'wetting': _rel_perm1w_prime,
-    'nonwetting': _rel_perm1nw_prime
-}
-
-# dictionary of relative permeabilties on all domains.
-ka_prime = {
-    0: subdomain1_rel_perm_prime,
-}
-
-
-
-def saturation(pc, index):
-    # inverse capillary pressure-saturation-relationship
-    return df.conditional(pc > 0, 1/((1 + pc)**(1/(index + 1))), 1)
-
-def saturation_sym(pc, index):
-    # inverse capillary pressure-saturation-relationship
-    return 1/((1 + pc)**(1/(index + 1)))
-
-
-# derivative of S-pc relationship with respect to pc. This is needed for the
-# construction of a analytic solution.
-def saturation_sym_prime(pc, index):
-    # inverse capillary pressure-saturation-relationship
-    return -1/((index+1)*(1 + pc)**((index+2)/(index+1)))
-
-
-# def saturation(pc, index):
-#     # inverse capillary pressure-saturation-relationship
-#     return df.conditional(pc > 0, -index*pc, 1)
-#
-#
-# def saturation_sym(pc, index):
-#     # inverse capillary pressure-saturation-relationship
-#     return -index*pc
-#
-#
-# # derivative of S-pc relationship with respect to pc. This is needed for the
-# # construction of a analytic solution.
-# def saturation_sym_prime(pc, index):
-#     # inverse capillary pressure-saturation-relationship
-#     return -index
-
-
-# note that the conditional definition of S-pc in the nonsymbolic part will be
-# incorporated in the construction of the exact solution below.
-S_pc_sym = {
-    0: ft.partial(saturation_sym, index=1),
-}
-
-S_pc_sym_prime = {
-    0: ft.partial(saturation_sym_prime, index=1),
-}
-
-sat_pressure_relationship = {
-    0: ft.partial(saturation, index=1),
-}
-
-
-#############################################
-# Manufacture source expressions with sympy #
-#############################################
-x, y = sym.symbols('x[0], x[1]')  # needed by UFL
-t = sym.symbols('t', positive=True)
-
-epsilon_x_inner = 0.7
-epsilon_x_outer = 0.99
-epsilon_y_inner = epsilon_x_inner
-epsilon_y_outer = epsilon_x_outer
-
-def mollifier(x, epsilon):
-    """ one d mollifier """
-    out_expr = sym.exp(-1/(1-(x/epsilon)**2) + 1)
-    return out_expr
-
-mollifier_handle = ft.partial(mollifier, epsilon=epsilon_x_inner)
-
-pw_sym_x = sym.Piecewise(
-    (mollifier_handle(x), x**2 < epsilon_x_outer**2),
-    (0, True)
-)
-pw_sym_y = sym.Piecewise(
-    (mollifier_handle(y), y**2 < epsilon_y_outer**2),
-    (0, True)
-)
-
-def mollifier2d(x, y, epsilon):
-    """ one d mollifier """
-    out_expr = sym.exp(-1/(1-(x**2 + y**2)/epsilon**2) + 1)
-    return out_expr
-
-mollifier2d_handle = ft.partial(mollifier2d, epsilon=epsilon_x_outer)
-
-pw_sym2d_x = sym.Piecewise(
-    (mollifier2d_handle(x, y), x**2 + y**2 < epsilon_x_outer**2),
-    (0, True)
-)
-
-zero_on_epsilon_shrinking_of_subdomain = sym.Piecewise(
-    (mollifier_handle(sym.sqrt(x**2 + y**2)+2*epsilon_x_inner), ((-2*epsilon_x_inner<sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<-epsilon_x_inner))),
-    (0, ((-epsilon_x_inner<=sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<=epsilon_x_inner))),
-    (mollifier_handle(sym.sqrt(x**2 + y**2)-2*epsilon_x_inner), ((epsilon_x_inner<sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<2*epsilon_x_inner))),
-    (1, True),
-)
-
-zero_on_epsilon_shrinking_of_subdomain_x = sym.Piecewise(
-    (mollifier_handle(x+2*epsilon_x_inner), ((-2*epsilon_x_inner<x) & (x<-epsilon_x_inner))),
-    (0, ((-epsilon_x_inner<=x) & (x<=epsilon_x_inner))),
-    (mollifier_handle(x-2*epsilon_x_inner), ((epsilon_x_inner<x) & (x<2*epsilon_x_inner))),
-    (1, True),
-)
-
-zero_on_epsilon_shrinking_of_subdomain_y = sym.Piecewise(
-    (1, y<=-2*epsilon_x_inner),
-    (mollifier_handle(y+2*epsilon_x_inner), ((-2*epsilon_x_inner<y) & (y<-epsilon_x_inner))),
-    (0, ((-epsilon_x_inner<=y) & (y<=epsilon_x_inner))),
-    (mollifier_handle(y-2*epsilon_x_inner), ((epsilon_x_inner<y) & (y<2*epsilon_x_inner))),
-    (1, True),
-)
-
-zero_on_shrinking = zero_on_epsilon_shrinking_of_subdomain #zero_on_epsilon_shrinking_of_subdomain_x + zero_on_epsilon_shrinking_of_subdomain_y
-gaussian = pw_sym2d_x# pw_sym_y*pw_sym_x
-cutoff = gaussian/(gaussian + zero_on_shrinking)
-
-# # construction of differentiable characteristic function.
-# def smooth_characteristic_func_on_epsilon_shrinking_of_subdomain0(x, y, epsilon_x_inner, epsilon_y_inner, epsilon_x_outer, epsilon_y_outer):
-#     dist_to_complement_x = ft.partial(mollifier, epsilon=epsilon_x_inner)
-#     dist_to_complement_y = ft.partial(mollifier, epsilon=epsilon_y_inner)
-#     dist_to_complement = dist_to_complement_y(y)*dist_to_complement_x(x)
-#     dist_to_eps_shrinking_x = ft.partial(zero_outside_epsilon_thickening_of_subdomain, epsilon=epsilon_x_outer)
-#     dist_to_eps_shrinking_y = ft.partial(zero_outside_epsilon_thickening_of_subdomain, epsilon=epsilon_y_outer)
-#     dist_to_eps_shrinking = dist_to_eps_shrinking_y(y)*dist_to_eps_shrinking_x(x)
-#     return dist_to_complement/(dist_to_eps_shrinking + dist_to_complement)
-#
-
-# def dist_to_epsilon_thickening_of_subdomain0_complement(x, y, epsilon):
-#     """ calculates the (euklidian distance)^2 of a point x,y to the epsilon
-#         thickening of the complement of the domain.
-#     """
-#     is_inside = ((1-sym.Abs(x) > epsilon) & (1-sym.Abs(y) > epsilon))
-#     sym.Piecewise((0, is_inside))
-
-p_e_sym = {
-    0: {'wetting': -10+0*t,  #*cutoff,
-        'nonwetting': (-1 -t*(1.1+y + x**2))},  #*cutoff},
-}
-
-pc_e_sym = dict()
-for subdomain, isR in isRichards.items():
-    if isR:
-        pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting']})
-    else:
-        pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting']
-                                        - p_e_sym[subdomain]['wetting']})
-
-
-symbols = {"x": x,
-           "y": y,
-           "t": t}
-# turn above symbolic code into exact solution for dolphin and
-# construct the rhs that matches the above exact solution.
-exact_solution_example = hlp.generate_exact_solution_expressions(
-                        symbols=symbols,
-                        isRichards=isRichards,
-                        symbolic_pressure=p_e_sym,
-                        symbolic_capillary_pressure=pc_e_sym,
-                        saturation_pressure_relationship=S_pc_sym,
-                        saturation_pressure_relationship_prime=S_pc_sym_prime,
-                        viscosity=viscosity,
-                        porosity=porosity,
-                        relative_permeability=relative_permeability,
-                        relative_permeability_prime=ka_prime,
-                        densities=densities,
-                        gravity_acceleration=gravity_acceleration,
-                        include_gravity=include_gravity,
-                        )
-source_expression = exact_solution_example['source']
-exact_solution = exact_solution_example['exact_solution']
-initial_condition = exact_solution_example['initial_condition']
-
-# Dictionary of dirichlet boundary conditions.
-dirichletBC = dict()
-# similarly to the outer boundary dictionary, if a patch has no outer boundary
-# None should be written instead of an expression.
-# This is a bit of a brainfuck:
-# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind.
-# Since a domain patch can have several disjoint outer boundary parts, the
-# expressions need to get an enumaration index which starts at 0.
-# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of
-# subdomain ind and boundary part j.
-# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting']
-# return the actual expression needed for the dirichlet condition for both
-# phases if present.
-
-# subdomain index: {outer boudary part index: {phase: expression}}
-for subdomain in isRichards.keys():
-    # if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None
-    if outer_boundary_def_points[subdomain] is None:
-        dirichletBC.update({subdomain: None})
-    else:
-        dirichletBC.update({subdomain: dict()})
-        # set the dirichlet conditions to be the same code as exact solution on
-        # the subdomain.
-        for outer_boundary_ind in outer_boundary_def_points[subdomain].keys():
-            dirichletBC[subdomain].update(
-                {outer_boundary_ind: exact_solution[subdomain]}
-                )
-
-
-# def saturation(pressure, subdomain_index):
-#     # inverse capillary pressure-saturation-relationship
-#     return df.conditional(pressure < 0, 1/((1 - pressure)**(1/(subdomain_index + 1))), 1)
-#
-# sa
-for starttime in starttimes:
-    for mesh_resolution, solver_tol in resolutions.items():
-        # initialise LDD simulation class
-        simulation = ldd.LDDsimulation(
-            tol=1E-14,
-            LDDsolver_tol=solver_tol,
-            debug=debugflag,
-            max_iter_num=max_iter_num,
-            FEM_Lagrange_degree=FEM_Lagrange_degree,
-            mesh_study=mesh_study
-            )
-
-        simulation.set_parameters(use_case=use_case,
-                                  output_dir=output_string,
-                                  subdomain_def_points=subdomain_def_points,
-                                  isRichards=isRichards,
-                                  interface_def_points=interface_def_points,
-                                  outer_boundary_def_points=outer_boundary_def_points,
-                                  adjacent_subdomains=adjacent_subdomains,
-                                  mesh_resolution=mesh_resolution,
-                                  viscosity=viscosity,
-                                  porosity=porosity,
-                                  L=L,
-                                  lambda_param=lambda_param,
-                                  relative_permeability=relative_permeability,
-                                  saturation=sat_pressure_relationship,
-                                  starttime=starttime,
-                                  number_of_timesteps=number_of_timesteps,
-                                  number_of_timesteps_to_analyse=number_of_timesteps_to_analyse,
-                                  plot_timestep_every=plot_timestep_every,
-                                  timestep_size=timestep_size,
-                                  sources=source_expression,
-                                  initial_conditions=initial_condition,
-                                  dirichletBC_expression_strings=dirichletBC,
-                                  exact_solution=exact_solution,
-                                  densities=densities,
-                                  include_gravity=include_gravity,
-                                  write2file=write_to_file,
-                                  )
-
-        simulation.initialise()
-        output_dir = simulation.output_dir
-        # simulation.write_exact_solution_to_xdmf()
-        output = simulation.run(analyse_condition=analyse_condition)
-        for subdomain_index, subdomain_output in output.items():
-            mesh_h = subdomain_output['mesh_size']
-            for phase, different_errornorms in subdomain_output['errornorm'].items():
-                filename = output_dir + "subdomain{}-space-time-errornorm-{}-phase.csv".format(subdomain_index, phase)
-                # for errortype, errornorm in different_errornorms.items():
-
-                    # eocfile = open("eoc_filename", "a")
-                    # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" )
-                    # eocfile.close()
-                    # if subdomain.isRichards:mesh_h
-                data_dict = {
-                    'mesh_parameter': mesh_resolution,
-                    'mesh_h': mesh_h,
-                }
-                for error_type, errornorms in different_errornorms.items():
-                    data_dict.update(
-                        {error_type: errornorms}
-                    )
-                errors = pd.DataFrame(data_dict, index=[mesh_resolution])
-                # check if file exists
-                if os.path.isfile(filename) == True:
-                    with open(filename, 'a') as f:
-                        errors.to_csv(f, header=False, sep='\t', encoding='utf-8', index=False)
-                else:
-                    errors.to_csv(filename, sep='\t', encoding='utf-8', index=False)
diff --git a/Two-phase-Two-phase/one-patch/TP-one-patch/mesh_study_for_fixed_timestep/TP-one-patch-mesh-study-fixed-timestep.py b/Two-phase-Two-phase/one-patch/TP-one-patch/mesh_study_for_fixed_timestep/TP-one-patch-mesh-study-fixed-timestep.py
deleted file mode 100755
index e172f97fda09fce04ade6693b1ca2562fc370e44..0000000000000000000000000000000000000000
--- a/Two-phase-Two-phase/one-patch/TP-one-patch/mesh_study_for_fixed_timestep/TP-one-patch-mesh-study-fixed-timestep.py
+++ /dev/null
@@ -1,490 +0,0 @@
-#!/usr/bin/python3
-import dolfin as df
-import mshr
-import numpy as np
-import sympy as sym
-import typing as tp
-import domainPatch as dp
-import LDDsimulation as ldd
-import functools as ft
-import helpers as hlp
-import datetime
-import os
-import pandas as pd
-
-date = datetime.datetime.now()
-datestr = date.strftime("%Y-%m-%d")
-#import ufl as ufl
-
-# init sympy session
-sym.init_printing()
-
-use_case = "TP-one-patch-mesh-study-fixed-timestep"
-# solver_tol = 5E-9
-max_iter_num = 1000
-FEM_Lagrange_degree = 1
-mesh_study = True
-# resolutions = {128: 1e-7} #[1,2,3,4,5,10,20,40,75,100]
-resolutions = {
-                1: 5e-7,
-                2: 5e-7,
-                4: 5e-7,
-                8: 5e-7,
-                16: 5e-7,
-                32: 5e-7,
-                64: 5e-7,
-                128: 5e-7,
-                256: 5e-7,
-                # 512: 1e-10,
-                }
-
-############ GRID #######################
-# mesh_resolution = 20
-timestep_size = 0.0025
-number_of_timesteps = 1
-plot_timestep_every = 1
-# decide how many timesteps you want analysed. Analysed means, that we write out
-# subsequent errors of the L-iteration within the timestep.
-number_of_timesteps_to_analyse = 1
-starttimes = [0.0, 0.05, 0.1, 0.7, 1.3]
-
-# starttimes = {
-#     1: 0.0
-#     2: 0.05
-#     4: 0.1
-#     8: 0.2
-#     16: 0.4
-#     32: 0.7
-#     64: 1.0
-#     128: 1.3
-# }
-
-Lw = 0.025 #/timestep_size
-Lnw=Lw
-
-lambda_w = 0
-lambda_nw = 0
-
-include_gravity = False
-debugflag = False
-analyse_condition = False
-
-if mesh_study:
-    output_string = "./output/{}-{}_timesteps{}_P{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree)
-else:
-    for tol in resolutions.values():
-        solver_tol = tol
-    output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol)
-
-# toggle what should be written to files
-if mesh_study:
-    write_to_file = {
-        'space_errornorms': True,
-        'meshes_and_markers': True,
-        'L_iterations_per_timestep': True,
-        'solutions': True,
-        'absolute_differences': True,
-        'condition_numbers': analyse_condition,
-        'subsequent_errors': True
-    }
-else:
-    write_to_file = {
-        'space_errornorms': True,
-        'meshes_and_markers': True,
-        'L_iterations_per_timestep': False,
-        'solutions': True,
-        'absolute_differences': True,
-        'condition_numbers': analyse_condition,
-        'subsequent_errors': True
-    }
-
-##### Domain and Interface ####
-# global simulation domain domain
-sub_domain0_vertices = [df.Point(-1.0, -1.0),  #
-                        df.Point(1.0, -1.0),  #
-                        df.Point(1.0, 1.0),  #
-                        df.Point(-1.0, 1.0)]
-
-subdomain0_outer_boundary_verts = {
-    0: [sub_domain0_vertices[0],
-        sub_domain0_vertices[1],
-        sub_domain0_vertices[2],
-        sub_domain0_vertices[3],
-        sub_domain0_vertices[0]]
-}
-
-# list of subdomains given by the boundary polygon vertices.
-# Subdomains are given as a list of dolfin points forming
-# a closed polygon, such that mshr.Polygon(subdomain_def_points[i]) can be used
-# to create the subdomain. subdomain_def_points[0] contains the
-# vertices of the global simulation domain and subdomain_def_points[i] contains the
-# vertices of the subdomain i.
-subdomain_def_points = [sub_domain0_vertices]
-# in the below list, index 0 corresponds to the 12 interface which has index 1
-interface_def_points = None
-
-# if a subdomain has no outer boundary write None instead, i.e.
-# i: None
-# if i is the index of the inner subdomain.
-outer_boundary_def_points = {
-    # subdomain number
-    0 : subdomain0_outer_boundary_verts
-}
-
-# adjacent_subdomains[i] contains the indices of the subdomains sharing the
-# interface i (i.e. given by interface_def_points[i]).
-adjacent_subdomains = None
-isRichards = {
-    0: False, #
-    }
-
-viscosity = {#
-# subdom_num : viscosity
-    0 : {'wetting' :1,
-         'nonwetting': 1}, #
-}
-
-porosity = {#
-# subdom_num : porosity
-    0: 1,#
-}
-
-# Dict of the form: { subdom_num : density }
-densities = {
-    0: {'wetting': 1,  #997,
-        'nonwetting': 1}, #1225}
-}
-
-gravity_acceleration = 9.81
-
-L = {#
-# subdom_num : subdomain L for L-scheme
-    0: {'wetting' :Lw,
-         'nonwetting': Lnw},#
-}
-
-lambda_param = {#
-# subdom_num : lambda parameter for the L-scheme
-    0: {'wetting' :lambda_w,
-         'nonwetting': lambda_nw},#
-}
-
-## relative permeabilty functions on subdomain 1
-def rel_perm1w(s):
-    # relative permeabilty wetting on subdomain1
-    return s**2
-
-def rel_perm1nw(s):
-    # relative permeabilty nonwetting on subdomain1
-    return (1-s)**2
-
-_rel_perm1w = ft.partial(rel_perm1w)
-_rel_perm1nw = ft.partial(rel_perm1nw)
-
-subdomain1_rel_perm = {
-    'wetting': _rel_perm1w,#
-    'nonwetting': _rel_perm1nw
-}
-
-## dictionary of relative permeabilties on all domains.
-relative_permeability = {#
-    0: subdomain1_rel_perm,
-}
-
-# definition of the derivatives of the relative permeabilities
-# relative permeabilty functions on subdomain 1
-def rel_perm1w_prime(s):
-    # relative permeabilty on subdomain1
-    return 2*s
-
-def rel_perm1nw_prime(s):
-    # relative permeabilty on subdomain1
-    return -2*(1-s)
-
-_rel_perm1w_prime = ft.partial(rel_perm1w_prime)
-_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime)
-
-subdomain1_rel_perm_prime = {
-    'wetting': _rel_perm1w_prime,
-    'nonwetting': _rel_perm1nw_prime
-}
-
-# dictionary of relative permeabilties on all domains.
-ka_prime = {
-    0: subdomain1_rel_perm_prime,
-}
-
-
-
-def saturation(pc, index):
-    # inverse capillary pressure-saturation-relationship
-    return df.conditional(pc > 0, 1/((1 + pc)**(1/(index + 1))), 1)
-
-def saturation_sym(pc, index):
-    # inverse capillary pressure-saturation-relationship
-    return 1/((1 + pc)**(1/(index + 1)))
-
-
-# derivative of S-pc relationship with respect to pc. This is needed for the
-# construction of a analytic solution.
-def saturation_sym_prime(pc, index):
-    # inverse capillary pressure-saturation-relationship
-    return -1/((index+1)*(1 + pc)**((index+2)/(index+1)))
-
-
-# def saturation(pc, index):
-#     # inverse capillary pressure-saturation-relationship
-#     return df.conditional(pc > 0, -index*pc, 1)
-#
-#
-# def saturation_sym(pc, index):
-#     # inverse capillary pressure-saturation-relationship
-#     return -index*pc
-#
-#
-# # derivative of S-pc relationship with respect to pc. This is needed for the
-# # construction of a analytic solution.
-# def saturation_sym_prime(pc, index):
-#     # inverse capillary pressure-saturation-relationship
-#     return -index
-
-
-# note that the conditional definition of S-pc in the nonsymbolic part will be
-# incorporated in the construction of the exact solution below.
-S_pc_sym = {
-    0: ft.partial(saturation_sym, index=1),
-}
-
-S_pc_sym_prime = {
-    0: ft.partial(saturation_sym_prime, index=1),
-}
-
-sat_pressure_relationship = {
-    0: ft.partial(saturation, index=1),
-}
-
-
-#############################################
-# Manufacture source expressions with sympy #
-#############################################
-x, y = sym.symbols('x[0], x[1]')  # needed by UFL
-t = sym.symbols('t', positive=True)
-
-epsilon_x_inner = 0.7
-epsilon_x_outer = 0.99
-epsilon_y_inner = epsilon_x_inner
-epsilon_y_outer = epsilon_x_outer
-
-def mollifier(x, epsilon):
-    """ one d mollifier """
-    out_expr = sym.exp(-1/(1-(x/epsilon)**2) + 1)
-    return out_expr
-
-mollifier_handle = ft.partial(mollifier, epsilon=epsilon_x_inner)
-
-pw_sym_x = sym.Piecewise(
-    (mollifier_handle(x), x**2 < epsilon_x_outer**2),
-    (0, True)
-)
-pw_sym_y = sym.Piecewise(
-    (mollifier_handle(y), y**2 < epsilon_y_outer**2),
-    (0, True)
-)
-
-def mollifier2d(x, y, epsilon):
-    """ one d mollifier """
-    out_expr = sym.exp(-1/(1-(x**2 + y**2)/epsilon**2) + 1)
-    return out_expr
-
-mollifier2d_handle = ft.partial(mollifier2d, epsilon=epsilon_x_outer)
-
-pw_sym2d_x = sym.Piecewise(
-    (mollifier2d_handle(x, y), x**2 + y**2 < epsilon_x_outer**2),
-    (0, True)
-)
-
-zero_on_epsilon_shrinking_of_subdomain = sym.Piecewise(
-    (mollifier_handle(sym.sqrt(x**2 + y**2)+2*epsilon_x_inner), ((-2*epsilon_x_inner<sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<-epsilon_x_inner))),
-    (0, ((-epsilon_x_inner<=sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<=epsilon_x_inner))),
-    (mollifier_handle(sym.sqrt(x**2 + y**2)-2*epsilon_x_inner), ((epsilon_x_inner<sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<2*epsilon_x_inner))),
-    (1, True),
-)
-
-zero_on_epsilon_shrinking_of_subdomain_x = sym.Piecewise(
-    (mollifier_handle(x+2*epsilon_x_inner), ((-2*epsilon_x_inner<x) & (x<-epsilon_x_inner))),
-    (0, ((-epsilon_x_inner<=x) & (x<=epsilon_x_inner))),
-    (mollifier_handle(x-2*epsilon_x_inner), ((epsilon_x_inner<x) & (x<2*epsilon_x_inner))),
-    (1, True),
-)
-
-zero_on_epsilon_shrinking_of_subdomain_y = sym.Piecewise(
-    (1, y<=-2*epsilon_x_inner),
-    (mollifier_handle(y+2*epsilon_x_inner), ((-2*epsilon_x_inner<y) & (y<-epsilon_x_inner))),
-    (0, ((-epsilon_x_inner<=y) & (y<=epsilon_x_inner))),
-    (mollifier_handle(y-2*epsilon_x_inner), ((epsilon_x_inner<y) & (y<2*epsilon_x_inner))),
-    (1, True),
-)
-
-zero_on_shrinking = zero_on_epsilon_shrinking_of_subdomain #zero_on_epsilon_shrinking_of_subdomain_x + zero_on_epsilon_shrinking_of_subdomain_y
-gaussian = pw_sym2d_x# pw_sym_y*pw_sym_x
-cutoff = gaussian/(gaussian + zero_on_shrinking)
-
-# # construction of differentiable characteristic function.
-# def smooth_characteristic_func_on_epsilon_shrinking_of_subdomain0(x, y, epsilon_x_inner, epsilon_y_inner, epsilon_x_outer, epsilon_y_outer):
-#     dist_to_complement_x = ft.partial(mollifier, epsilon=epsilon_x_inner)
-#     dist_to_complement_y = ft.partial(mollifier, epsilon=epsilon_y_inner)
-#     dist_to_complement = dist_to_complement_y(y)*dist_to_complement_x(x)
-#     dist_to_eps_shrinking_x = ft.partial(zero_outside_epsilon_thickening_of_subdomain, epsilon=epsilon_x_outer)
-#     dist_to_eps_shrinking_y = ft.partial(zero_outside_epsilon_thickening_of_subdomain, epsilon=epsilon_y_outer)
-#     dist_to_eps_shrinking = dist_to_eps_shrinking_y(y)*dist_to_eps_shrinking_x(x)
-#     return dist_to_complement/(dist_to_eps_shrinking + dist_to_complement)
-#
-
-# def dist_to_epsilon_thickening_of_subdomain0_complement(x, y, epsilon):
-#     """ calculates the (euklidian distance)^2 of a point x,y to the epsilon
-#         thickening of the complement of the domain.
-#     """
-#     is_inside = ((1-sym.Abs(x) > epsilon) & (1-sym.Abs(y) > epsilon))
-#     sym.Piecewise((0, is_inside))
-
-p_e_sym = {
-    0: {'wetting': (-7 - (1+t*t)*(1 + x*x + y*y)),  #*cutoff,
-        'nonwetting': (-1 -t*(1.1+y + x**2))},  #*cutoff},
-}
-
-pc_e_sym = dict()
-for subdomain, isR in isRichards.items():
-    if isR:
-        pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting']})
-    else:
-        pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting']
-                                        - p_e_sym[subdomain]['wetting']})
-
-
-symbols = {"x": x,
-           "y": y,
-           "t": t}
-# turn above symbolic code into exact solution for dolphin and
-# construct the rhs that matches the above exact solution.
-exact_solution_example = hlp.generate_exact_solution_expressions(
-                        symbols=symbols,
-                        isRichards=isRichards,
-                        symbolic_pressure=p_e_sym,
-                        symbolic_capillary_pressure=pc_e_sym,
-                        saturation_pressure_relationship=S_pc_sym,
-                        saturation_pressure_relationship_prime=S_pc_sym_prime,
-                        viscosity=viscosity,
-                        porosity=porosity,
-                        relative_permeability=relative_permeability,
-                        relative_permeability_prime=ka_prime,
-                        densities=densities,
-                        gravity_acceleration=gravity_acceleration,
-                        include_gravity=include_gravity,
-                        )
-source_expression = exact_solution_example['source']
-exact_solution = exact_solution_example['exact_solution']
-initial_condition = exact_solution_example['initial_condition']
-
-# Dictionary of dirichlet boundary conditions.
-dirichletBC = dict()
-# similarly to the outer boundary dictionary, if a patch has no outer boundary
-# None should be written instead of an expression.
-# This is a bit of a brainfuck:
-# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind.
-# Since a domain patch can have several disjoint outer boundary parts, the
-# expressions need to get an enumaration index which starts at 0.
-# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of
-# subdomain ind and boundary part j.
-# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting']
-# return the actual expression needed for the dirichlet condition for both
-# phases if present.
-
-# subdomain index: {outer boudary part index: {phase: expression}}
-for subdomain in isRichards.keys():
-    # if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None
-    if outer_boundary_def_points[subdomain] is None:
-        dirichletBC.update({subdomain: None})
-    else:
-        dirichletBC.update({subdomain: dict()})
-        # set the dirichlet conditions to be the same code as exact solution on
-        # the subdomain.
-        for outer_boundary_ind in outer_boundary_def_points[subdomain].keys():
-            dirichletBC[subdomain].update(
-                {outer_boundary_ind: exact_solution[subdomain]}
-                )
-
-
-# def saturation(pressure, subdomain_index):
-#     # inverse capillary pressure-saturation-relationship
-#     return df.conditional(pressure < 0, 1/((1 - pressure)**(1/(subdomain_index + 1))), 1)
-#
-# sa
-for starttime in starttimes:
-    for mesh_resolution, solver_tol in resolutions.items():
-        # initialise LDD simulation class
-        simulation = ldd.LDDsimulation(
-            tol=1E-14,
-            LDDsolver_tol=solver_tol,
-            debug=debugflag,
-            max_iter_num=max_iter_num,
-            FEM_Lagrange_degree=FEM_Lagrange_degree,
-            mesh_study=mesh_study
-            )
-
-        simulation.set_parameters(use_case=use_case,
-                                  output_dir=output_string,
-                                  subdomain_def_points=subdomain_def_points,
-                                  isRichards=isRichards,
-                                  interface_def_points=interface_def_points,
-                                  outer_boundary_def_points=outer_boundary_def_points,
-                                  adjacent_subdomains=adjacent_subdomains,
-                                  mesh_resolution=mesh_resolution,
-                                  viscosity=viscosity,
-                                  porosity=porosity,
-                                  L=L,
-                                  lambda_param=lambda_param,
-                                  relative_permeability=relative_permeability,
-                                  saturation=sat_pressure_relationship,
-                                  starttime=starttime,
-                                  number_of_timesteps=number_of_timesteps,
-                                  number_of_timesteps_to_analyse=number_of_timesteps_to_analyse,
-                                  plot_timestep_every=plot_timestep_every,
-                                  timestep_size=timestep_size,
-                                  sources=source_expression,
-                                  initial_conditions=initial_condition,
-                                  dirichletBC_expression_strings=dirichletBC,
-                                  exact_solution=exact_solution,
-                                  densities=densities,
-                                  include_gravity=include_gravity,
-                                  write2file=write_to_file,
-                                  )
-
-        simulation.initialise()
-        output_dir = simulation.output_dir
-        # simulation.write_exact_solution_to_xdmf()
-        output = simulation.run(analyse_condition=analyse_condition)
-        for subdomain_index, subdomain_output in output.items():
-            mesh_h = subdomain_output['mesh_size']
-            for phase, different_errornorms in subdomain_output['errornorm'].items():
-                filename = output_dir + "subdomain{}-space-time-errornorm-{}-phase.csv".format(subdomain_index, phase)
-                # for errortype, errornorm in different_errornorms.items():
-
-                    # eocfile = open("eoc_filename", "a")
-                    # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" )
-                    # eocfile.close()
-                    # if subdomain.isRichards:mesh_h
-                data_dict = {
-                    'mesh_parameter': mesh_resolution,
-                    'mesh_h': mesh_h,
-                }
-                for error_type, errornorms in different_errornorms.items():
-                    data_dict.update(
-                        {error_type: errornorms}
-                    )
-                errors = pd.DataFrame(data_dict, index=[mesh_resolution])
-                # check if file exists
-                if os.path.isfile(filename) == True:
-                    with open(filename, 'a') as f:
-                        errors.to_csv(f, header=False, sep='\t', encoding='utf-8', index=False)
-                else:
-                    errors.to_csv(filename, sep='\t', encoding='utf-8', index=False)
diff --git a/Two-phase-Two-phase/one-patch/TP-one-patch/mesh_study_for_fixed_timestep/run-simulation b/Two-phase-Two-phase/one-patch/TP-one-patch/mesh_study_for_fixed_timestep/run-simulation
deleted file mode 100755
index 0eb497502a082a0fec07a5449b1fe946d59c8cc7..0000000000000000000000000000000000000000
--- a/Two-phase-Two-phase/one-patch/TP-one-patch/mesh_study_for_fixed_timestep/run-simulation
+++ /dev/null
@@ -1,16 +0,0 @@
-#!/bin/bash
-
-[ $# -eq 0 ] && { echo "Usage: $0 simulation_file [logfile_name]"; exit 1; }
-
-SIMULATION_FILE=$1
-SIMULATION=${SIMULATION_FILE%.py}
-LOGFILE_DEFAULT="$SIMULATION.log"
-
-DATE=$(date -I)
-LOGFILE=${2:-$DATE-$LOGFILE_DEFAULT}
-
-GREETING="Simulation $SIMULATION is run on $DATE by $USER"
-
-echo $GREETING
-echo "running $SIMULATION_FILE | tee $LOGFILE"
-./$SIMULATION_FILE | tee $LOGFILE
diff --git a/Two-phase-Two-phase/one-patch/TP-one-patch/run-simulation b/Two-phase-Two-phase/one-patch/TP-one-patch/run-simulation
deleted file mode 100755
index 0eb497502a082a0fec07a5449b1fe946d59c8cc7..0000000000000000000000000000000000000000
--- a/Two-phase-Two-phase/one-patch/TP-one-patch/run-simulation
+++ /dev/null
@@ -1,16 +0,0 @@
-#!/bin/bash
-
-[ $# -eq 0 ] && { echo "Usage: $0 simulation_file [logfile_name]"; exit 1; }
-
-SIMULATION_FILE=$1
-SIMULATION=${SIMULATION_FILE%.py}
-LOGFILE_DEFAULT="$SIMULATION.log"
-
-DATE=$(date -I)
-LOGFILE=${2:-$DATE-$LOGFILE_DEFAULT}
-
-GREETING="Simulation $SIMULATION is run on $DATE by $USER"
-
-echo $GREETING
-echo "running $SIMULATION_FILE | tee $LOGFILE"
-./$SIMULATION_FILE | tee $LOGFILE