diff --git a/example.py b/examples/example.py similarity index 95% rename from example.py rename to examples/example.py index e8a794b157206b9c3703370129fc48a02520fa44..42062e526c9ee3f26ff8f965426f5423122b776e 100644 --- a/example.py +++ b/examples/example.py @@ -6,8 +6,8 @@ import numpy as np from matplotlib import pyplot as plt -from kernels_PDE import Gaussian_laplace -from vkoga_PDE import VKOGA_PDE +from vkoga_pde.kernels_PDE import Gaussian_laplace +from vkoga_pde.vkoga_PDE import VKOGA_PDE np.random.seed(1) diff --git a/kernels_PDE.py b/vkoga_pde/kernels_PDE.py similarity index 100% rename from kernels_PDE.py rename to vkoga_pde/kernels_PDE.py diff --git a/vkoga_PDE.py b/vkoga_pde/vkoga_PDE.py similarity index 99% rename from vkoga_PDE.py rename to vkoga_pde/vkoga_PDE.py index 7763c89830afec6d1e0d946ac164903b9ba9ccaa..534434682dacf791e1e9af8ef5611810d242dac8 100644 --- a/vkoga_PDE.py +++ b/vkoga_pde/vkoga_PDE.py @@ -1,7 +1,7 @@ # First approach to develope code for greedy PDE. # ToDo: Not sure whether vector valued output makes sense, but let's try to implement it .. -from kernels_PDE import wendland32_laplace +from vkoga_pde.kernels_PDE import wendland32_laplace import numpy as np from sklearn.base import BaseEstimator from sklearn.utils.validation import check_X_y, check_array