diff --git a/README.md b/README.md index 2c10b6bbf851073d49dc2b9542e11dd0418e304c..ee8ec5cca22a32dc242ea7b9bcb3a66446d523e0 100644 --- a/README.md +++ b/README.md @@ -2,6 +2,16 @@ Python implementation of the 2L-VKOGA algorithm, which uses a kernel optimization (two layered kernel) before running VKOGA with the modified kernel. + +## Installation + +pip install git+https://gitlab.mathematik.uni-stuttgart.de/pub/ians-anm/2l-vkoga@v0.1.0 + + +## Usage + +Have a look into the [demo file](https://gitlab.mathematik.uni-stuttgart.de/pub/ians-anm/2l-vkoga/-/blob/main/example_files/01_testfile.py). + ## How to cite: If you use this code in your work for scalar-valued output data, please cite the paper diff --git a/example_files/01_testfile.py b/example_files/01_testfile.py index b8cecc02d657ed5510a416a63869a975e7ef1a70..9e740614b056c879ef659118c26c208af3c37685 100644 --- a/example_files/01_testfile.py +++ b/example_files/01_testfile.py @@ -41,26 +41,6 @@ plt.draw() -# Result: Since the training set is quite small, we can clearly observe overfitting via the -# validation set tracking - - - - - - - - - - - - - - - - - -