diff --git a/README.md b/README.md index 42b4297878950e9756bc971b389adf7a56b8a270..2c10b6bbf851073d49dc2b9542e11dd0418e304c 100644 --- a/README.md +++ b/README.md @@ -3,7 +3,7 @@ Python implementation of the 2L-VKOGA algorithm, which uses a kernel optimization (two layered kernel) before running VKOGA with the modified kernel. ## How to cite: -If you use this code in your work, please cite the paper +If you use this code in your work for scalar-valued output data, please cite the paper > T. Wenzel, F. Marchetti, and E. Perracchione. Data-driven kernel designs for optimized greedy schemes: A machine learning perspective. @@ -19,5 +19,23 @@ arXiv preprint arXiv:2301.08047, 2023. } ``` +If you use this code in your work for vectorial-valued output data, please cite the paper + +> T. Wenzel, B. Haasdonk, H. Kleikamp, M. Ohlberger, and F. Schindler. Application +of Deep Kernel Models for Certified and Adaptive RB-ML-ROM Surrogate Model- +ing. arXiv preprint arXiv:2302.14526, 2023. Accepted for LSSC 2023 proceedings. + +```bibtex: +@article{wenzel2023application, + title={Application of {D}eep {K}ernel {M}odels for {C}ertified +and {A}daptive {RB}-{ML}-{ROM} {S}urrogate {M}odeling}, + author={Wenzel, Tizian and Haasdonk, Bernard and Kleikamp, Hendrik and Ohlberger, Mario and Schindler, Felix}, + journal={arXiv preprint arXiv:2302.14526}, + year={2023}, + note={Accepted for LSSC 2023 proceedings.} +} +``` + + For further details on the VKOGA algorithm, please refer to [here](https://github.com/GabrieleSantin/VKOGA).