Skip to content
Snippets Groups Projects
Select Git revision
  • 1c876bee5c5b5962185906d110d2fb99f74474b4
  • main default protected
  • v0.1.2
  • v0.1.1
  • v0.1.0
5 results

2l-vkoga

  • Clone with SSH
  • Clone with HTTPS
  • user avatar
    Tizian Wenzel authored
    1c876bee
    History
    Name Last commit Last update
    example_files
    vkoga_2l
    README.md

    2L-VKOGA

    Python implementation of the 2L-VKOGA algorithm, which uses a kernel optimization (two layered kernel) before running VKOGA with the modified kernel.

    How to cite:

    If you use this code in your work for scalar-valued output data, please cite the paper

    T. Wenzel, F. Marchetti, and E. Perracchione. Data-driven kernel designs for optimized greedy schemes: A machine learning perspective. arXiv preprint arXiv:2301.08047, 2023.

    @article{wenzel2023data,
      title={Data-driven kernel designs for optimized greedy schemes: A machine learning perspective},
      author={Wenzel, Tizian and Marchetti, Francesco and Perracchione, Emma},
      journal={arXiv preprint arXiv:2301.08047},
      year={2023}
    }

    If you use this code in your work for vectorial-valued output data, please cite the paper

    T. Wenzel, B. Haasdonk, H. Kleikamp, M. Ohlberger, and F. Schindler. Application of Deep Kernel Models for Certified and Adaptive RB-ML-ROM Surrogate Model- ing. arXiv preprint arXiv:2302.14526, 2023. Accepted for LSSC 2023 proceedings.

    @article{wenzel2023application,
      title={Application of {D}eep {K}ernel {M}odels for {C}ertified
    and {A}daptive {RB}-{ML}-{ROM} {S}urrogate {M}odeling},
      author={Wenzel, Tizian and Haasdonk, Bernard and Kleikamp, Hendrik and Ohlberger, Mario and Schindler, Felix},
      journal={arXiv preprint arXiv:2302.14526},
      year={2023},
      note={Accepted for LSSC 2023 proceedings.}
    }

    For further details on the VKOGA algorithm, please refer to here.