diff --git a/gext/fitting.py b/gext/fitting.py index 9422b1530a6ea77ddaeaead55543b4f8fa94799f..c72614289fc596063d53cf0ce0de13f56f15cadd 100644 --- a/gext/fitting.py +++ b/gext/fitting.py @@ -61,11 +61,11 @@ class LeastSquare(AbstractFitting): """Given a set of vectors and a target return the fitting coefficients.""" matrix = np.array(vectors).T - A = matrix.T @ matrix + a = matrix.T @ matrix b = matrix.T @ target if self.options["regularization"] > 0.0: - A += np.identity(len(b))*self.options["regularization"] - coefficients = np.linalg.solve(A, b) + a += np.identity(len(b))*self.options["regularization"] + coefficients = np.linalg.solve(a, b) return np.array(coefficients, dtype=np.float64) class QuasiTimeReversible(AbstractFitting): @@ -98,12 +98,12 @@ class QuasiTimeReversible(AbstractFitting): else: time_reversible_matrix = matrix[:, :q//2+1] + matrix[:, :q//2-1:-1] - A = time_reversible_matrix.T @ time_reversible_matrix + a = time_reversible_matrix.T @ time_reversible_matrix b = time_reversible_matrix.T @ (target + past_target) if self.options["regularization"] > 0.0: - A += np.identity(len(b))*self.options["regularization"] - coefficients = np.linalg.solve(A, b) + a += np.identity(len(b))*self.options["regularization"] + coefficients = np.linalg.solve(a, b) if q == 1: full_coefficients = np.concatenate(([-1.0], coefficients))