Design of adaptive finite element software:
The finite element toolbox ALBERTA

Alfred Schmidt Kunibert G. Siebert

Zentrum fuer Technomathematik Institut fiir Mathematik

Universitat Bremen Universitat Augsburg

Bibliothekstr. 2 Universitatstr. 14

D-28359 Bremen, Germany D-86159 Augsburg, Germany

Daniel Koster Claus-Justus Heine

Department of Applied Mathematics Abteilung fiir Angewandte Mathematik
University of Twente Albert-Ludwigs-Universitat Freiburg
P.O. Box 217 Hermann-Herder-Str. 10

7500AE Enschede, The Netherlands D-79104 Freiburg im Breisgau, Germany

http://www.alberta-fem.de

<
\,Q’Q'Q\
'

ALBERTA is an Adaptive multi-Level finite element toolbox using Bisectioning refinement and Error
control by Residual Techniques for scientific Applications.

Version: ALBERTA-2.0, November 12, 2018

http://www.alberta-fem.de

ii

PREFACE iii

Preface

During the last years, scientific computing has become an important research branch located
between applied mathematics and applied sciences and engineering. Nowadays, in numeri-
cal mathematics not only simple model problems are treated, but modern and well-founded
mathematical algorithms are applied to solve complex problems of real life applications. Such
applications are demanding for computational realization and need suitable and robust tools
for a flexible and efficient implementation. Modularity and abstract concepts allow for an easy
transfer of methods to different applications.

Inspired by and parallel to the investigation of real life applications, numerical mathe-
matics has built and improved many modern algorithms which are now standard tools in
scientific computing. Examples are adaptive methods, higher order discretizations, fast linear
and non-linear iterative solvers, multi-level algorithms, etc. These mathematical tools are able
to reduce computing times tremendously and for many applications a simulation can only be
realized in a reasonable timeframe using such highly efficient algorithms.

A very flexible software is needed when working in both fields of scientific computing and
numerical mathematics. We developed the toolbox ALBERTA! for meeting these requirements.
Our intention in the design of ALBERTA is threefold: First, it is a toolbox for fast and
flexible implementation of efficient software for real life applications, based on the modern
algorithms mentioned above. Secondly, in an interplay with mathematical analysis, ALBERTA
is an environment for improving existent, or developing new numerical methods. And finally, it
allows the direct integration of such new or improved methods in existing simulation software.

Before having ALBERTA, we worked with a variety of solvers, each designed for the solution
of one single application. Most of them were based on data structures specifically designed
for one single application. A combination of different solvers or exchanging modules between
programs was hard to do. Facing these problems, we wanted to develop a general adaptive
finite element environment, open for implementing a large class of applications, where an
exchange of modules and a coupling of different solvers is easy to realize.

Such a toolbox has to be based on a solid concept which is still open for extensions as
science develops. Such a solid concept can be derived from a mathematical abstraction of
problem classes, numerical methods, and solvers. Our mathematical view of numerical algo-
rithms, especially finite element methods, is based on our education and scientific research
in the departments for applied mathematics at the universities of Bonn and Freiburg. This
view point has greatly inspired the abstract concepts of ALBERTA as well as their practical
realization, reflected in the main data structures. The robustness and flexible extensibility of
our concept was approved in various applications from physics and engineering, like compu-
tational fluid dynamics, structural mechanics, industrial crystal growth, etc. as well as by the
validation of new mathematical methods.

ALBERTA is a library with data structures and functions for adaptive finite element simu-
lations in one, two, and three space dimension, written in the programming language ANSI-C.
Shortly after finishing the implementation of the first version of ALBERTA and using it for
first scientific applications, we confronted students with it in a course about finite element
methods. The idea was to work on more interesting projects in the course and providing a
strong foundation for an upcoming diploma thesis. Using ALBERTA in education then re-

!The original name of the toolbox was ALBERT. Due to copyright reasons, we had to rename it and we
have chosen ALBERTA.

iv PREFACE

quired a documentation of data structures and functions. The numerical course tutorials were
the basis for a description of the background and concepts of adaptive finite elements.

The combination of the abstract and concrete description resulted in a manual for AL-
BERTA and made it possible that it is now used world wide in universities and research
centers. The interest from other scientists motivated a further polishing of the manual as well
as the toolbox itself, and resulted in this book, which is accompanied by a full distribution of
ALBERTA on a CD.

Starting first as a two-men-project, ALBERTA is evolving and now there are more people
maintaining and extending it. We are grateful for a lot of substantial contributions coming
from: Michael Fried, who was the first brave man besides us to use ALBERT, Claus-Justus
Heine, Daniel Koster, and Oliver Kriessl. Daniel and Claus in particular set up the GNU
configure tools for an easy, platform-independent installation of the software.

We are indebted to the authors of the gltools, especially Jiirgen Fuhrmann, and also to
the developers of GRAPE, especially Bernard Haasdonk, Robert Kléfkorn, Mario Ohlberger,
and Martin Rumpf.

We want to thank the Department of Mathematics at the University of Maryland (USA),
in particular Ricardo H. Nochetto, where part of the documentation was written during a
visit of the second author. We appreciate the invitation of the Isaac Newton Institute in
Cambridge (UK) where we could meet and work intensively on the revision of the manual for
three weeks.

We thank our friends, distributed all over the world, who have pointed out a lot of typos
in the manual and suggested several improvements for ALBERTA.

Last but not least, ALBERTA would not have come into being without the stimulating
atmosphere in the group in Freiburg, which was the perfect environment for working on this
project. We want to express our gratitude to all former colleagues, especially Gerhard Dziuk.

Bremen and Augsburg, December 2003
Alfred Schmidt and Kunibert G. Siebert

The book is organized as follows: In Chapter 1 we describe the concepts of adaptive
finite element methods and its ingredients like the domain discretization, finite element ba-
sis functions and degrees of freedom, numerical integration via quadrature formulas for the
assemblage of discrete systems, and adaptive algorithms.

The second chapter is a tutorial for using ALBERTA without giving much details about
data structures and functions. The implementation of three model problems is presented and
explained. We start with the easy and straight forward implementation of the Poisson problem
to learn about the basics of ALBERTA . The examples with the implementation of a nonlinear
reaction-diffusion problem and the time dependent heat equation are more involved and show
the tools of ALBERTA for attacking more complex problems. The chapter is closed with a
short introduction to the installation of the ALBERTA-distribution enclosed to this book in a
UNIX/Linux environment.

The realization of data structures and functions in ALBERTA is based on the abstract
concepts presented in Chapter 1. A detailed description of all data structures and functions
of ALBERTA is given in Chapter 3. The book closes with separate lists of all data types,
symbolic constants, functions, and macros.

PREFACE Y

Tentative: The cover pictures show the ALBERTA logo, cogwheel [16], flute [4], and
minimal surface [30], and perhaps also Bridgman crystal growth [21, 30].

Visit the ALBERTA web site, www.alberta-fem.de, for more information, FAQ, contri-
butions, updates, pictures from different projects, etc.

www.alberta-fem.de

vi

PREFACE

Contents

Preface

Contents

Introduction

1 Concepts and abstract algorithms
1.1 Mesh refinement and coarsening Lo

1.1.1
1.1.2
1.1.3

Refinement algorithms for simplicial meshes
Coarsening algorithm for simplicial meshes
Operations during refinement and coarsening

1.2 The hierarchical mesh o
1.3 Degrees of freedom
1.4 Finite element spaces and finite element discretization

1.4.1
1.4.2
1.4.3
1.4.4
1.4.5
1.4.6
1.4.7
1.4.8

Barycentric coordinateso
Finite element spaces
Evaluation of finite element functions
Interpolation and restriction during refinement and coarsening

Discretization of 2nd order problems
Discretization of coupled vector valued problems
Numerical quadrature o o o
Finite element discretization of 2nd order problems

1.5 Adaptive Methods

1.5.1
1.5.2
1.5.3
1.5.4

Adaptive method for stationary problems
Mesh refinement strategies
Coarsening strategies o
Adaptive methods for time dependent problems

1.6 Submeshes s

Bibliography

vii

iii

vii

viii CONTENTS

INTRODUCTION ix

Introduction

Finite element methods provide a widely used tool for the solution of problems with an
underlying variational structure. Modern numerical analysis and implementations for finite
elements provide more and more tools for the efficient solution of large-scale applications.
Efficiency can be increased by using local mesh adaption, by using higher order elements,
where applicable, and by fast solvers.

Adaptive procedures for the numerical solution of partial differential equations started in
the late 70’s and are now standard tools in science and engineering. Adaptive finite element
methods are a meaningful approach for handling multi scale phenomena and making realistic
computations feasible, specially in 3d.

There exists a vast variety of books about finite elements. Here, we only want to mention
the books by Ciarlet [21], and Brenner and Scott [22] as the most prominent ones. The book
by Brenner and Scott also contains an introduction to multi-level methods.

The situation is completely different for books about adaptive finite elements. Only few
books can be found with introductory material about the mathematics of adaptive finite
element methods, like the books by Verfiirth [57], and Ainsworth and Oden [2]. Material about
more practical issues like adaptive techniques and refinement procedures can for example be
found in [3, 5, 7, 35, 37, 38].

Another basic ingredient for an adaptive finite element method is the a posteriori error
estimator which is the main object of interest in the analysis of adaptive methods. While a
general theory exists for these estimators in the case of linear and mildly nonlinear problems
[9, 57], highly nonlinear problems usually still need a special treatment, see [23, 30, 44, 45, 54]
for instance. There exist a lot of different approaches to (and a large number of articles
about) the derivation of error estimates, by residual techniques, dual techniques, solution of
local problems, hierarchical approaches, etc., a fairly incomplete list of references is [I, 3, 6,

)) 9)]'

Although adaptive finite element methods in practice construct a sequence of discrete

solutions which converge to the true solution, this convergence could only be proved recently

for linear elliptic problem [11, 42, 43] and for the nonlinear Laplacian [55], based on the fun-
damental paper [28]. For a modification of the convergent algorithm in [11], quasi-optimality
of the adaptive method was proved in [15] and [53].

During the last years there has been a great progress in designing finite element software.
It is not possible to mention all freely available packages. Examples are [5, 10, 11, 40, 49],
and an continuously updated list of other available finite element codes and resources can for
instance be found at
www.engr.usask.ca/~macphed/finite/fe_resources/.

Adaptive finite element methods and basic concepts of ALBERTA

Finite element methods calculate approximations to the true solution in some finite dimen-
sional function space. This space is built from local function spaces, usually polynomials of
low order, on elements of a partitioning of the domain (the mesh). An adaptive method ad-
justs this mesh (or the local function space, or both) to the solution of the problem. This
adaptation is based on information extracted from a posteriori error estimators.

The basic iteration of an adaptive finite element code for a stationary problem is

e assemble and solve the discrete system;

www.engr.usask.ca/~macphed/finite/fe_resources/

x INTRODUCTION

e calculate the error estimate;
e adapt the mesh, when needed.

For time dependent problems, such an iteration is used in each time step, and the step size
of a time discretization may be subject to adaptivity, too.

The core part of every finite element program is the problem dependent assembly and
solution of the discretized problem. This holds for programs that solve the discrete problem
on a fixed mesh as well as for adaptive methods that automatically adjust the underlying mesh
to the actual problem and solution. In the adaptive iteration, the assemblage and solution of
a discrete system is necessary after each mesh change. Additionally, this step is usually the
most time consuming part of that iteration.

A general finite element toolbox must provide flexibility in problems and finite element
spaces while on the other hand this core part can be performed efficiently. Data structures
are needed which allow an easy and efficient implementation of the problem dependent parts
and also allow the use of adaptive methods, mesh modification algorithms, and fast solvers for
linear and nonlinear discrete problems by calling library routines. On one hand, large flexibility
is needed in order to choose various kinds of finite element spaces, with higher order elements
or combinations of different spaces for mixed methods or systems. On the other hand, the
solution of the resulting discrete systems may profit enormously from a simple vector—oriented
storage of coefficient vectors and matrices. This also allows the use of optimized solver and
BLAS libraries. Additionally, multilevel preconditioners and solvers may profit from hierarchy
information, leading to highly efficient solvers for the linear (sub—) problems.

ALBERTA [16, 47, 49] provides all those tools mentioned above for the efficient imple-
mentation and adaptive solution of general nonlinear problems in one, two, or three space
dimensions. The design of the ALBERTA data structures allows a dimension independent im-
plementation of problem dependent parts. The mesh adaptation is done by local refinement
and coarsening of mesh elements, while the same local function space is used on all mesh
elements.

Starting point for the design of ALBERTA data structures is the abstract concept of a
finite element space defined (similar to the definition of a single finite element by Ciarlet [21])
as a triple consisting of

e a collection of mesh elements;

e a set of local basis functions on a single element, usually a restriction of global basis
functions to a single element;

e a connection of local and global basis functions giving global degrees of freedom for a
finite element function.
This directly leads to the definition of three main groups of data structures:

e data structures for geometric information storing the underlying mesh together with

element coordinates, boundary type and geometry, etc.;

e data structures for finite element information providing values of local basis functions

and their derivatives;

e data structures for algebraic information linking geometric data and finite element data.
Using these data structures, the finite element toolbox ALBERTA provides the whole ab-
stract framework like finite element spaces and adaptive strategies, together with hierarchical
meshes, routines for mesh adaptation, and the complete administration of finite element spaces

INTRODUCTION xi

and the corresponding degrees of freedom (DOFs) during mesh modifications. The underlying
data structures allow a flexible handling of such information. Furthermore, tools for numeri-
cal quadrature, matrix and load vector assembly as well as solvers for (linear) problems, like
conjugate gradient methods, are available.

A specific problem can be implemented and solved by providing just some problem depen-
dent routines for evaluation of the (linearized) differential operator, data, nonlinear solver,
and (local) error estimators, using all the tools above mentioned from a library.

Both geometric and finite element information strongly depend on the space dimension.
Thus, mesh modification algorithms and basis functions are implemented for one (1d), two
(2d), and three (3d) dimensions separately and are provided by the toolbox. Everything
besides that can be formulated in such a way that the dimension only enters as a parameter
(like size of local coordinate vectors, e.g.). For usual finite element applications this results in
a dimension independent programming, where all dimension dependent parts are hidden in
a library. This allows a dimension independent programming of applications to the greatest
possible extent.

The remaining parts of the introduction give a short overview over the main concepts,
details are then given in Chapter 1.

The hierarchical mesh

The underlying mesh is a conforming triangulation of the computational domain into sim-
plices, i.e. intervals (1d), triangles (2d), or tetrahedra (3d). The simplicial mesh is generated
by refinement of a given initial triangulation. Refined parts of the mesh can be de-refined, but
elements of the initial triangulation (macro elements) must not be coarsened. The refinement
and coarsening routines construct a sequence of nested meshes with a hierarchical structure.
In ALBERTA, the recursive refinement by bisection is implemented, using the notation of
Kossaczky [35].

During refinement, new degrees of freedom are created. A single degree of freedom is
shared by all elements which belong to the support of the corresponding finite element basis
function (compare next paragraph). The mesh refinement routines must create a new DOF
only once and give access to this DOF from all elements sharing it. Similarly, DOFs are
handled during coarsening. This is done in cooperation with the DOF administration tool,
see below.

The bisectioning refinement of elements leads naturally to nested meshes with the hierar-
chical structure of binary trees, one tree for every element of the initial triangulation. Every
interior node of that tree has two pointers to the two children; the leaf elements are part
of the actual triangulation, which is used to define the finite element space(s). The whole
triangulation is a list of given macro elements together with the associated binary trees. The
hierarchical structure allows the generation of most information by the hierarchy, which re-
duces the amount of data to be stored. Some information is stored on the (leaf) elements
explicitly, other information is located at the macro elements and is transferred to the leaf
elements while traversing through the binary tree. Element information about vertex coor-
dinates, domain boundaries, and element adjacency can be computed easily and very fast
from the hierarchy, when needed. Data stored explicitly at tree elements can be reduced to
pointers to the two possible children and information about local DOFs (for leaf elements).
Furthermore, the hierarchical mesh structure directly leads to multilevel information which
can be used by multilevel preconditioners and solvers.

xii INTRODUCTION

Access to mesh elements is available solely via routines which traverse the hierarchical
trees; no direct access is possible. The traversal routines can give access to all tree elements,
only to leaf elements, or to all elements which belong to a single hierarchy level (for a multilevel
application, e.g.). In order to perform operations on visited elements, the traversal routines
call a subroutine which is given to them as a parameter. Only such element information which
is needed by the current operation is generated during the tree traversal.

Finite elements

The values of a finite element function or the values of its derivatives are uniquely defined
by the values of its DOFs and the values of the basis functions or the derivatives of the basis
functions connected with these DOFs. We follow the concept of finite elements which are
given on a single element S in local coordinates: Finite element functions on an element S
are defined by a finite dimensional function space P on a reference element S and the (one to
one) mapping A5 .8 — S from the reference element S to the element S. In this situation the
non vanishing basis functions on an arbitrary element are given by the set of basis functions
of P in local coordinates A°. Also, derivatives are given by the derivatives of basis functions
on P and derivatives of A\%.

Each local basis function on S is uniquely connected to a global degree of freedom, which
can be accessed from S via the DOF administration tool. ALBERTA supports basis functions
connected with DOFs, which are located at vertices of elements, at edges, at faces (in 3d), or
in the interior of elements. DOFs at a vertex are shared by all elements which meet at this
vertex, DOF's at an edge or face are shared by all elements which contain this edge or face,
and DOF's inside an element are not shared with any other element. The support of the basis
function connected with a DOF is the patch of all elements sharing this DOF.

For a very general approach, we only need a vector of the basis functions (and its deriva-
tives) on S and a function for the communication with the DOF administration tool in order
to access the degrees of freedom connected to local basis functions. By such information every
finite element function (and its derivatives) is uniquely described on every element of the
mesh.

During mesh modifications, finite element functions must be transformed to the new finite
element space. For example, a discrete solution on the old mesh yields a good initial guess for
an iterative solver and a smaller number of iterations for a solution of the discrete problem on
the new mesh. Usually, these transformations can be realized by a sequence of local operations.
Local interpolations and restrictions during refinement and coarsening of elements depend on
the function space P and the refinement of S only. Thus, the subroutine for interpolation
during an atomic mesh refinement is the efficient implementation of the representation of
coarse grid functions by fine grid functions on S and its refinement. A restriction during
coarsening is implemented using similar information.

Lagrange finite element spaces up to order four are currently implemented in one, two,
and three dimensions. This includes the communication with the DOF administration as well
as the interpolation and restriction routines.

Degrees of freedom

Degrees of freedom (DOFs) connect finite element data with geometric information of a
triangulation. For general applications, it is necessary to handle several different sets of degrees

INTRODUCTION xiii

of freedom on the same triangulation. For example, in mixed finite element methods for the
Navier-Stokes problem, different polynomial degrees are used for discrete velocity and pressure
functions.

During adaptive refinement and coarsening of a triangulation, not only elements of the
mesh are created and deleted, but also degrees of freedom together with them. The geometry
is handled dynamically in a hierarchical binary tree structure, using pointers from parent
elements to their children. For data corresponding to DOF's, which are usually involved with
matrix—vector operations, simpler storage and access methods are more efficient. For that
reason every DOF is realized just as an integer index, which can easily be used to access data
from a vector or to build matrices that operate on vectors of DOF data. This results in a very
efficient access during matrix/vector operations and in the possibility to use libraries for the
solution of linear systems with a sparse system matrix ([20], e.g.).

Using this realization of DOFs two major problems arise:

e During refinement of the mesh, new DOFs are added, and additional indices are needed.
The total range of used indices has to be enlarged. At the same time, all vectors and
matrices that use these DOF indices have to be adjusted in size, too.

e During coarsening of the mesh, DOFs are deleted. In general, the deleted DOF is not the
one which corresponds to the largest integer index. Holes with unused indices appear in
the total range of used indices and one has to keep track of all used and unused indices.

These problems are solved by a general DOF administration tool. During refinement, it en-
larges the ranges of indices, if no unused indices produced by a previous coarsening are
available. During coarsening, a book—keeping about used and unused indices is done. In order
to reestablish a contiguous range of used indices, a compression of DOFs can be performed;
all DOFs are renumbered such that all unused indices are shifted to the end of the index
range, thus removing holes of unused indices. Additionally, all vectors and matrices con-
nected to these DOF's are adjusted correspondingly. After this process, vectors do not contain
holes anymore and standard operations like BLASI routines can be applied and yield optimal
performance.

In many cases, information stored in DOF vectors has to be adjusted to the new dis-
tribution of DOFs during mesh refinement and coarsening. Each DOF vector can provide
pointers to subroutines that implement these operations on data (which usually strongly de-
pend on the corresponding finite element basis). Providing such a pointer, a DOF vector will
automatically be transformed during mesh modifications.

All tasks of the DOF administration are performed automatically during refinement and
coarsening for every kind and combination of finite elements defined on the mesh.

Adaptive solution of the discrete problem

The aim of adaptive methods is the generation of a mesh which is adapted to the problem
such that a given criterion, like a tolerance for the estimated error between exact and discrete
solution, is fulfilled by the finite element solution on this mesh. An optimal mesh should
be as coarse as possible while meeting the criterion, in order to save computing time and
memory requirements. For time dependent problems, such an adaptive method may include
mesh changes in each time step and control of time step sizes. The philosophy implemented in
ALBERTA is to change meshes successively by local refinement or coarsening, based on error

xiv INTRODUCTION

estimators or error indicators, which are computed a posteriori from the discrete solution and
given data on the current mesh.

Several adaptive strategies are proposed in the literature, that give criteria which mesh
elements should be marked for refinement. All strategies are based on the idea of an equidis-
tribution of the local error to all mesh elements. Babuska and Rheinboldt [3] motivate that
for stationary problems a mesh is almost optimal when the local errors are approximately
equal for all elements. So, elements where the error indicator is large will be marked for re-
finement, while elements with a small estimated indicator are left unchanged or are marked
for coarsening. In time dependent problems, the mesh is adapted to the solution in every time
step using a posteriori information like in the stationary case. As a first mesh for the new
time step we use the adaptive mesh from the previous time step. Usually, only few iterations
of the adaptive procedure are then needed for the adaptation of the mesh for the new time
step. This may be accompanied by an adaptive control of time step sizes.

Given pointers to the problem dependent routines for assembling and solution of the
discrete problems, as well as an error estimator/indicator, the adaptive method for finding a
solution on a quasi—optimal mesh can be performed as a black—box algorithm. The problem
dependent routines are used for the calculation of discrete solutions on the current mesh and
(local) error estimates. Here, the problem dependent routines heavily make use of library tools
for assembling system matrices and right hand sides for an arbitrary finite element space, as
well as tools for the solution of linear or nonlinear discrete problems. On the other hand,
any specialized algorithm may be added if needed. The marking of mesh elements is based
on general refinement and coarsening strategies relying on the local error indicators. During
the following mesh modification step, DOF vectors are transformed automatically to the new
finite element spaces as described in the previous paragraphs.

Dimension independent program development

Using black—box algorithms, the abstract definition of basis functions, quadrature formulas
and the DOF administration tool, only few parts of the finite element code depend on the
dimension. Usually, all dimension dependent parts are hidden in the library. Hence, program
development can be done in 1d or 2d, where execution is usually much faster and debugging is
much easier (because of simple 1d and 2d visualization, e.g., which is much more involved in
3d). With no (or maybe few) additional changes, the program will then also work in 3d. This
approach leads to a tremendous reduction of program development time for 3d problems.

Notations. For a differentiable function f: © — R on a domain Q C R% d = 1,2, 3, we set

Vi) = (Far (@), fa(2)) = (88 @)..... ;:df(fv))

and
2 0?
D2f(2) = (fara)r ey 4= [——— .
f(@) = (Fara) g1, ((%ck:r:lf(x)) et
In the case of a vector valued, differentiable function f = (fi1,..., fn): Q@ — R"™ we write
VI@) = (i@ @iy = (5o fi@). s o i)
= 1,21 sy Ji,xg 7;:17__.771 - 8.%’1 1 g ey 8xd 1 Z‘:Lm’n

INTRODUCTION XV

and

By LP(€2), 1 < p < 00, we denote the usual Lebesgue spaces with norms

1/p
1 fllzr) = </Q | f(z) [P dl‘) forp<oo and [|f| (@) = ess Sup |f(2)]-
FAS

The Sobolev space of functions u € L?(Q) with weak derivatives Vu € L%() is denoted by
H'(Q) with semi norm

1/2 1/2
ey = ([[Fu@Pde) andvorn ullin = (Il + i)

xvi INTRODUCTION

Chapter 1

Concepts and abstract algorithms

1.1 Mesh refinement and coarsening

In this section, we describe the basic algorithms for the local refinement and coarsening of
simplicial meshes in two and three dimensions. In 1d the grid is built from intervals, in 2d
from triangles, and in 3d from tetrahedra. We restrict ourselves here to simplicial meshes, for
several reasons:

1. A simplex is one of the most simple geometric types and complex domains may be
approximated by a set of simplices quite easily.

2. Simplicial meshes allow local refinement (see Figure 1.1) without the need of non-
conforming meshes (hanging nodes), parametric elements, or mixture of element types
(which is the case for quadrilateral meshes, e.g., see Figure 1.2).

3. Polynomials of any degree are easily represented on a simplex using local (barycentric)
coordinates.

Figure 1.1: Global and local refinement of a triangular mesh.

First of all we start with the definition of a simplex, parametric simplex and triangulation:

1.1.1 Definition (Simplex). a) Let ag,...,aq € R™ be given such that a; — ag,...,aq — ag
are linear independent vectors in R™. The convex set

S = conv hull{ay,...,aq}
is called a d—simpler in R™. For k < d let
S’ = conv hull{ay, ...,a;} C IS

1

2 CHAPTER 1. CONCEPTS AND ABSTRACT ALGORITHMS

Figure 1.2: Local refinements of a rectangular mesh: with hanging nodes, conforming closure
using bisected rectangles, and conforming closure using triangles. Using a conforming closure
with rectangles, a local refinement has always global effects up to the boundary.

be a k-simplex with ay,...,a;, € {ao,...,aq}. Then S’ is called a k-sub-simplex of S. A
0—sub-simplex is called vertex, a 1-sub—simplex edge and a 2-sub—simplex face.
b) The standard simplex in R? is defined by

S:CODthll{dozo,le261,...,&d:6d},

where e; are the unit vectors in R?.

c) Let Fg: S — S C R™ be an invertible, differentiable mapping. Then S is called a
parametric d-simplez in R™. The k-sub-simplices S’ of S are given by the images of the
k-sub-simplices S’ of S. Thus, the vertices ag, ..., aq of S are the points Fs(ao), ..., Fs(aq).

d) For a d-simplex S, we define

hg := diam(S) and ps = sup{2r; B, C S is a d-ball of radius r},
the diameter and inball-diameter of S.

1.1.2 Remark. Every d-simplex S in R” is a parametric simplex. Defining the matrix Ag €
Rnxd by

As=|ai—ay -+ aq—ao|,

the parameterization Fg: S — S is given by
Fs(z) = AsZ + ag. (1.1)

Since Fg is affine linear it is differentiable. It is easy to check that Flg: S — S is invertible
and that Fg(a;) = a;, i =0,...,d holds.

1.1.3 Definition (Triangulation). a) Let S be a set of (parametric) d-simplices and define

) = interior U S c R™
Ses

We call § a conforming triangulation of €1, iff for two simplices S1,S2 € § with S1 # S5 the
intersection S; NSy is either empty or a complete k—sub—simplex of both S; and S for some
0<k<d.

b) Let Sk, k& > 0, be a sequence of conforming triangulations. This sequence is called
(shape) regular, iff

sup max max cond(DF§(#) - DFs(2)) < oo (1.2)
keNg SeSs; zeS

1.1. MESH REFINEMENT AND COARSENING 3

holds, where DFg is the Jacobian of Fg and cond(A) = ||A||[|[A™!| denotes the condition
number.

1.1.4 Remark. For a sequence Si, kK > 0, of non—parametric triangulations the regularity
condition (1.2) is equivalent to the condition

S
sup max — < 0.
keNg SESk pPs

In order to construct a sequence of triangulations, we consider the following situation: An
initial (coarse) triangulation Sy of the domain is given. We call it macro triangulation. It may
be generated by hand or by some mesh generation algorithm ([50, 51]).

Some (or all) of the simplices are marked for refinement, depending on some error esti-
mator or indicator. The marked simplices are then refined, i.e. they are cut into smaller ones.
After several refinements, some other simplices may be marked for coarsening. Coarsening
tries to unite several simplices marked for coarsening into a bigger simplex. A successive re-
finement and coarsening will produce a sequence of triangulations Sp, 51, The refinement
of single simplices that we describe in the next section produces for every simplex of the macro
triangulation only a finite and small number of similarity classes for the resulting elements.
The coarsening is more or less the inverse process of refinement. This leads to a finite number
of similarity classes for all simplices in the whole sequence of triangulations.

The refinement of non—parametric and parametric simplices is the same topological op-
eration and can be performed in the same way. The actual children’s shape of parametric
elements additionally involves the children’s parameterization. In the following we describe
the refinement and coarsening for triangulations consisting of non—parametric elements. The
refinement of parametric triangulations can be done in the same way, additionally using given
parameterizations. Regularity for the constructed sequence can be obtained with special prop-
erties of the parameterizations for parametric elements and the finite number of similarity
classes for simplices.

Marking criteria and marking strategies for refinement and coarsening are subject of Sec-
tion 1.5.

1.1.1 Refinement algorithms for simplicial meshes

For simplicial elements, several refinement algorithms are widely used. The discussion about
and description of these algorithms mainly centers around refinement in 2d and 3d since
refinement in 1d is straight forward.

One example is regular refinement (“red refinement”), which divides every triangle into
four similar triangles, see Figure 1.3. The corresponding refinement algorithm in three di-
mensions cuts every tetrahedron into eight tetrahedra, and only a small number of similarity
classes occur during successive refinements, see [13, 14]. Unfortunately, hanging nodes arise
during local regular refinement. To remove them and create a conforming mesh, in two dimen-
sions some triangles have to be bisected (“green closure”). In three dimensions, several types
of irregular refinement are needed for the green closure. This creates more similarity classes,
even in two dimensions. Additionally, these bisected elements have to be removed before a
further refinement of the mesh, in order to keep the triangulations shape regular.

Another possibility is to use bisection of simplices only. For every element (triangle or
tetrahedron) one of its edges is marked as the refinement edge, and the element is refined into

4 CHAPTER 1. CONCEPTS AND ABSTRACT ALGORITHMS

Figure 1.3: Global and local regular refinement of triangles and conforming closure by bisec-
tion.

two elements by cutting this edge at its midpoint. There are several possibilities to choose
such a refinement edge for a simplex, one example is to use the longest edge; Mitchell [39]
compared different approaches. We focus on an algorithm where the choice of refinement
edges on the macro triangulation prescribes the refinement edges for all simplices that are
created during mesh refinement. This makes sure that shape regularity of the triangulations
is conserved.

In two dimensions we use the newest vertex bisection (in Mitchell’s notation) and in three
dimensions the bisection procedure of Kossaczky described in [35]. We use the convention,
that all vertices of an element are given fixed local indices. Valid indices are 0, 1, for vertices of
an interval, 0, 1, and 2 for vertices of a triangle, and 0, 1, 2, and 3 for vertices of a tetrahedron.
Now, the refinement edge for an element is fixed to be the edge between the vertices with local
indices 0 and 1. Here we use the convention that in 1d the element itself is called “refinement
edge”.

During refinement, the new vertex numbers, and thereby the refinement edges, for the
newly created child simplices are prescribed by the refinement algorithm. For both child
elements, the index of the newly generated vertex at the midpoint of this edge has the highest
local index (2 resp. 3 for triangles and tetrahedra). These numbers are shown in Figure 1.4
for 1d and 2d, and in Figure 1.5 for 3d. In 1d and 2d this numbering is the same for all
refinement levels. In 3d, one has to make some special arrangements: the numbering of the
second child’s vertices depends on the type of the element. There exist three different element
types 0, 1, and 2. The type of the elements on the macro triangulation can be prescribed
(usually type O tetrahedron). The type of the refined tetrahedra is recursively given by the
definition that the type of a child element is ((parent’s type 4+ 1) modulo 3). In Figure 1.5
we used the following convention: for the index set {1,2,2} on child[1] of a tetrahedron
of type 0 we use the index 1 and for a tetrahedron of type 1 and 2 the index 2. Figure 1.6
shows successive refinements of a type 0 tetrahedron, producing tetrahedra of types 1, 2, and
0 again.

2 0 1
0 | child[0] child[1] child[0] child[1]
P — i

0 child[0] 1 ¢ child[1] 0 . | - 0

Figure 1.4: Numbering of nodes on parent and children for intervals and triangles.

By the above algorithm the refinements of simplices are totally determined by the local

1.1. MESH REFINEMENT AND COARSENING)

child[1] 1 child[1] 0

child(0] child[0]
0 {2,1,1}

3 {1.2,2}

Figure 1.5: Numbering of nodes on parent and children for tetrahedra.

Type O:
0 2
Type 1:
child[0] ' 'hlld[l]
Type 2:
child[0]
child[0] child[1] 2
2
3 1
‘ ’ 1
child[1]
Type O: 0
ch11d[0] chil d[l] child[0]
3
child[0 3
child(1] chlld[OJ Chﬂd[0
child[1]

Figure 1.6: Successive refinements of a type 0 tetrahedron.

vertex numbering on the macro triangulation, plus a prescribed type for every macro element
in three dimensions. Furthermore, a successive refinement of every macro element only pro-
duces a small number of similarity classes. In case of the “generic” triangulation of a (unit)
square in 2d and cube in 3d into two triangles resp. six tetrahedra (see Figure 1.7 for a
single triangle and tetrahedron from such a triangulation — all other elements are generated
by rotation and reflection), the numbering and the definition of the refinement edge during
refinement of the elements guarantee that the longest edge will always be the refinement edge,

6 CHAPTER 1. CONCEPTS AND ABSTRACT ALGORITHMS

see Figure 1.8.

The refinement of a given triangulation now uses the bisection of single elements and can
be performed either iteratively or recursively. In 1d, bisection only involves the element which
is subject to refinement and thus is a completely local operation. Both variants of refining a
given triangulation are the same. In 2d and 3d, bisection of a single element usually involves
other elements, resulting in two different algorithms.

For tetrahedra, the first description of such a refinement procedure was given by Béansch
using the iterative variant [7]. It abandons the requirement of one to one inter—element ad-
jacencies during the refinement process and thus needs the intermediate handling of hanging
nodes. Two recursive algorithms, which do not create such hanging nodes and are therefore
easier to implement, are published by Kossaczky [35] and Maubach [37]. For a special class
of macro triangulations, they result in exactly the same tetrahedral meshes as the iterative
algorithm.

In order to keep the mesh conforming during refinement, the bisection of an edge is allowed
only when such an edge is the refinement edge for all elements which share this edge. Bisection
of an edge and thus of all elements around the edge is the atomic refinement operation, and
no other refinement operation is allowed. See Figures 1.9 and 1.10 for the two and three—
dimensional situations.

o (1,1,1)
1
(1,1,0)
2 IN(1,0
0.0 (1,0) (0,0,0) (1,0,0)

Figure 1.7: Generic elements in two and three dimensions.

(Y

0,0) (1,0)

Figure 1.8: Refined generic elements in two and three dimensions.

If an element has to be refined, we have to collect all elements at its refinement edge. In
two dimensions this is either the neighbour opposite this edge or there is no other element in
the case that the refinement edge belongs to the boundary. In three dimensions we have to
loop around the edge and collect all neighbours at this edge. If for all collected neighbours
the common edge is the refinement edge too, we can refine the whole patch at the same time
by inserting one new vertex in the midpoint of the common refinement edge and bisecting
every element of the patch. The resulting triangulation then is a conforming one.

1.1. MESH REFINEMENT AND COARSENING 7

|

Figure 1.9: Atomic refinement operation in two dimensions. The common edge is the refine-
ment edge for both triangles.

Figure 1.10: Atomic refinement operation in three dimensions. The common edge is the re-
finement edge for all tetrahedra sharing this edge.

But sometimes the refinement edge of a neighbour is not the common edge. Such a neigh-
bour is not compatibly divisible and we have to perform first the atomic refinement operation
at the neighbour’s refinement edge. In 2d the child of such a neighbour at the common edge
is then compatibly divisible; in 3d such a neighbour has to be bisected at most three times
and the resulting tetrahedron at the common edge is then compatibly divisible. The recursive
refinement algorithm now reads

1.1.5 Algorithm (Recursive refinement of one simplex).

subroutine recursive_refine(S, S)
do
A:={5"€S8; 5 is not compatibly divisible with S}
for all S’ € A do
recursive_refine(S’, S);
end for
until A =10

A:={5"€S8;5 is element at the refinement edge of S}

for all S'e A
bisect S’ into S and S|
S = S\{5'} U {5, 51}

end for

In Figure 1.11 we show a two-dimensional situation where recursion is needed. For all
triangles, the longest edge is the refinement edge. Let us assume that triangles A and B are
marked for refinement. Triangle A can be refined at once, as its refinement edge is a boundary
edge. For refinement of triangle B, we have to recursively refine triangles C and D. Again,
triangle D can be directly refined, so recursion terminates there. This is shown in the second
part of the figure. Back in triangle C, this can now be refined together with its neighbour.
After this, also triangle B can be refined together with its neighbour.

8 CHAPTER 1. CONCEPTS AND ABSTRACT ALGORITHMS

Figure 1.11: Recursive refinement in two dimensions. Triangles A and B are initially marked
for refinement.

The refinement of a given triangulation & where some or all elements are marked for
refinement is then performed by

1.1.6 Algorithm (Recursive refinement algorithm).

subroutine refine(S)
for all S€ S do
if S is marked for refinement
recursive_refine(S, S)
end if
end for

Since we use recursion, we have to guarantee that recursions terminates. Kossaczky [35]
and Mitchell [39] proved

1.1.7 Theorem (Termination and Shape Regularity). The recursive refinement algorithm
using bisection of single elements fulfills

1. The recursion terminates if the macro triangulation satisfies certain criteria.

2. We obtain shape reqularity for all elements at all levels.

1.1.8 Remark. 1.) A first observation is, that simplices initially not marked for refinement
are bisected, enforced by the refinement of a marked simplex. This is a necessity to obtain a
conforming triangulation, also for the regular refinement.

2.) It is possible to mark an element for more than one bisection. The natural choice is
to mark a d-simplex S for d bisections. After d refinement steps all original edges of S are
bisected. A simplex S is refined k times by refining the children S; and Sy k& — 1 times right
after the refinement of S.

3.) The recursion does not terminate for an arbitrary choice of refinement edges on the
macro triangulation. In two dimensions, such a situation is shown in Figure 1.12. The selected
refinement edges of the triangles are shown by dashed lines. One can easily see, that there
are no patches for the atomic refinement operation. This triangulation can only be refined if
other choices of refinement edges are made, or by a non-recursive algorithm.

4.) In two dimensions, for every macro triangulation it is possible to choose the refinement
edges in such a way that the recursion terminates (selecting the ‘longest edge’). In three
dimensions the situation is more complicated. But there is a maybe refined grid such that
refinement edges can be chosen in such a way that recursion terminates [35].

1.1. MESH REFINEMENT AND COARSENING 9

Figure 1.12: A macro triangulation where recursion does not stop.

1.1.2 Coarsening algorithm for simplicial meshes

The coarsening algorithm is more or less the inverse of the refinement algorithm. The basic
idea is to collect all those elements that were created during the refinement at same time, i.e.
the parents of these elements build a compatible refinement patch. The elements may only
be coarsened if all involved elements are marked for coarsening and are of finest level locally,
i.e. no element is refined further. The actual coarsening again can be performed in an atomic
coarsening operation without the handling of hanging nodes. Information is passed from all
elements onto the parents and the whole patch is coarsened at the same time by removing
the vertex in the parent’s common refinement edge (see Figures 1.13 and 1.14 for the atomic
coarsening operation in 2d and 3d). This coarsening operation is completely local in 1d.

-\

Figure 1.13: Atomic coarsening operation in two dimensions.

Figure 1.14: Atomic coarsening operation in three dimensions.

During refinement, the bisection of an element can enforce the refinement of an unmarked
element in order to keep the mesh conforming. During coarsening, an element may only be
coarsened if all elements involved in this operation are marked for coarsening. This is the main
difference between refinement and coarsening. In an adaptive method this guarantees that
elements with a large local error indicator marked for refinement are refined and no element
is coarsened where the local error indicator is not small enough (compare Section 1.5.3).

Since the coarsening process is the inverse of the refinement, refinement edges on parent
elements are again at their original position. Thus, further refinement is possible with a
terminating recursion and shape regularity for all resulting elements.

1.1.9 Algorithm (Local coarsening).

subroutine coarsen_element(S, S)

10 CHAPTER 1. CONCEPTS AND ABSTRACT ALGORITHMS

A:={5" €8; 5 must not be coarsened with S}
if A=
for all child pairs SB,S{ at common coarsening edge do
coarsen S(, and S| into the parent S’
S = S\[Sh.S1} U {S')
end for
end if

The following routine coarsens as many elements as possible of a given triangulation S:
1.1.10 Algorithm (Coarsening algorithm).

subroutine coarsen(S)
for all S€ S do
if S is marked for coarsening
coarsen_element (S, S)
end if
end for

1.1.11 Remark. Also in the coarsening procedure an element can be marked for several
coarsening steps. Usually, the coarsening markers for all patch elements are cleared if a patch
must not be coarsened. If the patch must not be coarsened because one patch element is not
of locally finest level but may coarsened more than once, elements stay marked for coarsening.
A coarsening of the finer elements can result in a patch which may then be coarsened.

1.1.3 Operations during refinement and coarsening

The refinement and coarsening of elements can be split into four major steps, which are now
described in detail.

1.1.3.1 Topological refinement and coarsening

The actual bisection of an element is performed as follows: the simplex is cut into two children
by inserting a new vertex at the refinement edge. All objects like this new vertex, or a new
edge (in 2d and 3d), or face (in 3d) only have to be created once on the refinement patch. For
example, all elements share the new vertex and two child triangles share a common edge. The
refinement edge is divided into two smaller ones which have to be adjusted to the respective
children. In 3d all faces inside the patch are bisected into two smaller ones and this creates an
additional edge for each face. All these objects can be shared by several elements and have to
be assigned to them. If neighbour information is stored, one has to update such information
for elements inside the patch as well as for neighbours at the patch’s boundary.

In the coarsening process the vertex which is shared by all elements is removed, edges and
faces are rejoined and assigned to the respective parent simplices. Neighbour information has
to be reinstalled inside the patch and with patch neighbours.

1.1.3.2 Administration of degrees of freedoms

Single DOFs can be assigned to a vertex, edge, or face and such a DOF is shared by all
simplices meeting at the vertex, edge, or face respectively. Finally, there may be DOF's on the

1.1. MESH REFINEMENT AND COARSENING 11

element itself, which are not shared with any other simplex. At each object there may be a
single DOF or several DOFs, even for several finite element spaces.

During refinement new DOFs are created. For each newly created object (vertex, edge,
face, center) we have to create the exact amount of DOFs, if DOF's are assigned to the object.
For example we have to create vertex DOF's at the midpoint of the refinement edge, if DOF's
are assigned to a vertex. Again, DOFs must only be created once for each object and have to
be assigned to all simplices having this object in common.

Additionally, all vectors and matrices using these DOFs have to be adjusted in size auto-
matically.

1.1.3.3 Transfer of geometric data

Information about the childrens’/parent’s shape has to be transformed. During refinement,
for a simplex we only have to calculate the coordinates of the midpoint of the refinement edge,
coordinates of the other vertices stay the same and can be handed from parent to children.
If the refinement edge belongs to a curved boundary, the coordinates of the new vertex
are calculated by projecting this midpoint onto the curved boundary. During coarsening, no
calculations have to be done. The d + 1 vertices of the two children which are not removed
are the vertices of the parent.

For the shape of parametric elements, usually more information has to be calculated. Such
information can be stored in a DOF—vector, e.g., and may need DOF's on parent and children.
Thus, information has to be assembled after installing the DOFs on the children and before
deleting DOFs on the parent during refinement; during coarsening, first DOFs on the parent
have to be installed, then information can be assembled, and finally the children’s DOFs are
removed.

1.1.3.4 Transformation of finite element information

Using iterative solvers for the (non-) linear systems, a good initial guess is needed. Usually,
the discrete solution from the old grid, interpolated into the finite element space on the new
grid, is a good initial guess. For piecewise linear finite elements we only have to compute the
value at the newly created node at the midpoint of the refinement edge and this value is the
mean value of the values at the vertices of the refinement edge:

1
up (midpoint) = i(uh(vertex 0) + up(vertex 1)).

For linear elements an interpolation during coarsening is trivial since the values at the vertices
of the parents stay the same.

For higher order elements more DOFs are involved, but only DOFs belonging to the
refinement /coarsening patch. The interpolation strongly depends on the local basis functions
and it is described in detail in Section 1.4.4.

Usually during coarsening information is lost (for example, we lose information about
the value of a linear finite element function at the coarsening edge’s midpoint). But linear
functionals applied to basis functions that are calculated on the fine grid and stored in some
coefficient vector can be transformed during coarsening without loss of information, if the finite
element spaces are nested. This is also described in detail in Section 1.4.4. One application of
this procedure is a time discretization, where L? scalar products of the new basis functions

12 CHAPTER 1. CONCEPTS AND ABSTRACT ALGORITHMS

with the solution uzld from the last time step appear on the right hand side of the discrete
problem.

Since DOF's can be shared by several elements, these operations are done on the whole
refinement/coarsening patch. This avoids that coefficients of the interpolant are calculated
more than once for a shared DOF. During the restriction of a linear functional we have to add
contribution(s) from one/several DOF(s) to some other DOF(s). Performing this operation
on the whole patch makes it easy to guarantee that the contribution of a shared DOF is only
added once.

1.2 The hierarchical mesh

There are basically two ways of storing a finite element grid. One possibility is to store only
the elements of the triangulation in a vector or a linked list. All information about elements
is located at the elements. In this situation there is no direct information of a hierarchical
structure, needed, for example, for multigrid methods. Such information has to be generated
and stored separately. During mesh refinement, new elements are added (at the end) to the
vector or list of elements. During mesh coarsening, elements are removed. In case of an element
vector, ‘holes’ may appear in the vector that contain no longer a valid element. One has to
take care of them, or remove them by compressing the vector.

ALBERTA uses the second way of storing the mesh. It keeps information about the whole
hierarchy of grids starting with the macro triangulation up to the actual one. Storing infor-
mation about the whole hierarchical structure will need an additional amount of computer
memory. On the other hand, we can save computer memory because such information which
can be produced by the hierarchical structure does not have to be stored explicitly on each
element.

The simplicial grid is generated by refinement of a given macro triangulation. Refined parts
of the grid can be de-refined, but we can not coarsen elements of the macro triangulation.
The refinement and coarsening routines, described in Section 1.1, construct a sequence of
nested grids with a hierarchical structure. Every refined simplex is refined into two children.
Elements that may be coarsened were created by refining the parent into these two elements
and are now just coarsened back into this parent (compare Sections 1.1.1, 1.1.2).

Using this structure of the refinement/coarsening routines, every element of the macro
triangulation is the root of a binary tree: every interior node of that tree has two pointers to
the two children; the leaf elements are part of the actual triangulation, which is used to define
the finite element space. The whole triangulation is a list of given macro elements together
with the associated binary trees, compare Figure 1.2.

Some information is stored on the (leaf) elements explicitly, other information is located
at the macro elements and is transferred to the leaf elements while traversing through the
binary tree. For instance, information about DOFs has to be stored explicitely for all (leaf)
elements whereas geometric information can be produced using the hierarchical structure.

Operations on elements can only be performed by using the mesh traversal routines de-
scribed in Section 3.2.17. These routines need as arguments a flag which indicates which
information should be present on the elements, which elements should be called (interior or
leaf elements), and a pointer to a function which performs the operation on a single element.
The traversal routines always start on the first macro element and go to the indicated elements
of the binary tree at this macro element. This is done in a recursive way by first traversing

1.2. THE HIERARCHICAL MESH

mesh
first_macro_el
el [0]
el [0] 6 (1] el [0]
macro_el el child(0] 2 (1] el [0]F{10 (1)
next el 0 child(1] el [0] 7 1 efe1 (0]
3 (1] 11 [1]
el [0] el [0]
macro_el el child[0] 4 11] el [o]12 [1]
next el 1 child[1] el [0] 8 [11—e1 0]
5 (1] ol [0) 13 (1]

13

Figure 1.15: Sample mesh refinement and corresponding element trees

through the subtree of the first child and then by traversing through the subtree of the second
child. This recursion terminates if a leaf element is reached. After calling all elements of this
tree we go to the next macro element, traverse through the binary tree located there, and so
on until the end of the list of macro elements.

All information that should be available for mesh elements is stored explicitly for ele-
ments of the macro triangulation. Thus, all information is present on the macro level and is
transfered to the other tree elements by transforming requested data from one element to its
children. This can be done by simple calculations using the hierarchic structure induced by
the refinement algorithm, compare Section 1.1.1.

As mentioned above, geometric data like coordinates of the element’s vertices can be
efficiently computed using the hierarchical structure (in the case of non-parametric elements
and polyhedral boundary). Going from parent to child only the coordinates of one vertex
change and the new ones are simply the mean value of the coordinates of two vertices at the
refinement edge of the parent. The other vertex coordinates stay the same. Another example
of such information is information about adjacent elements. Using adjacency information of
the macro elements we can compute requested information for all elements of the mesh.

User data on leaf elements Many finite element applications need special information
on each element of the actual triangulation, i.e. the leaf elements of the hierarchical mesh.
In adaptive codes this may be, for example, error indicators produced by an error estimator.
Such information needs to be available only for leaf elements and not for elements inside the
binary tree.

The fact that leaf elements do not have children, and thus the pointers to such children
in leaf element’s data structures are not used, can be exploited by enabling access to special
data via these pointers. So, special pointers for such data do not have to be included in an

14 CHAPTER 1. CONCEPTS AND ABSTRACT ALGORITHMS

element data structure. Details about such an implementation are given in

1.3 Degrees of freedom

Degrees of freedom (DOFSs) connect finite element data with geometric information of a
triangulation. Each finite element function is uniquely determined by the values (coefficients)
of all its degrees of freedom.

For example, a continuous and piecewise linear finite element function can be described
by the values of this function at all vertices of the triangulation. They build this function’s
degrees of freedom. A piecewise constant function is determined by its value in each element. In
ALBERTA, every abstract DOF is realized as an integer index into vectors, which corresponds
to the global index in a vector of coefficients.

For the definition of general finite element spaces DOFs located at vertices of elements,
at edges (in 2d and 3d), at faces (in 3d), or in the interior of elements are needed. DOF's at a
vertex are shared by all elements which meet at this vertex, DOFs at an edge or face are shared
by all elements which contain this edge or face, and DOF's inside an element are not shared
with any other element. The location of a DOF and the sharing between elements corresponds
directly to the support of basis functions that are connected to them, see Figure 1.16.

K< A7 4

Figure 1.16: Support of basis functions connected with a DOF at a vertex, edge, face (only
in 3d), and the interior.

When DOFs and basis functions are used in a hierarchical manner, then the above applies
only to a single hierarchical level. Due to the hierarchies, the supports of basis functions which
belong to different levels do overlap.

For general applications, it may be necessary to handle several different sets of degrees
of freedom on the same triangulation. For example, in mixed finite element methods for
the Navier—Stokes problem, different polynomial degrees are used for discrete velocity and
pressure functions. In Figure 1.17, three examples of DOF distributions for continuous finite
elements in 2d are shown: piecewise quadratic finite elements [0l (left), piecewise linear [+ and
piecewise quadratic [0l finite elements (middle, Taylor-Hood element for Navier—Stokes: linear
pressure and quadratic velocity), piecewise cubic [+| and piecewise quartic [0l finite elements
(right, Taylor-Hood element for Navier—Stokes: quartic velocity and linear pressure).

Additionally, different finite element spaces may use the same set of degrees of freedom,
if appropriate. For example, higher order elements with Lagrange type basis or a hierarchical
type basis can share the same abstract set of DOFs.

The DOFs are directly connected to the mesh and its elements, by the connection between
local (on each element) and global degrees of freedom. On the other hand, an application uses
DOFs only in connection with finite element spaces and basis functions. Thus, while the
administration of DOFs is handled by the mesh, definition and access to DOFs is mainly
done via finite element spaces.

1.4. FINITE ELEMENT SPACES AND FINITE ELEMENT DISCRETIZATION 15

o]
[©] O]
[o] o]
o] 0]
o] [
(O] (O] (O] (O] o]
o]
0 Q
[©] [©] [o[o[o[+1+]

Figure 1.17: Examples of DOF distributions in 2d.

1.4 Finite element spaces and finite element discretization

In the sequel we assume that © C R? is a bounded domain triangulated by S, i.e.

a=Js

Ses

The following considerations are also valid for a triangulation of an immersed surface
(with n > d). In this situation one has to exchange derivatives (those with respect to z) by
tangential derivatives (tangential to the actual element, derivatives are always taken element—
wise) and the determinant of the parameterization’s Jacobian has to be replaced by Gram’s
determinant of the parameterization. But for the sake of clearness and simplicity we restrict
our considerations to the case n = d.

The values of a finite element function or the values of its derivatives are uniquely defined
by the values of its DOFs and the values of the basis functions or the derivatives of the
basis functions connected with these DOFs. Usually, evaluation of those values is performed
element-wise. On a single element the value of a finite element function at a point z in this
element is determined by the DOFs associated with this specific element and the values of
the non vanishing basis functions at this point.

We follow the concept of finite elements which are given on a single element S in local
coordinates. We distinguish two classes of finite elements:

Finite element functions on an element S defined by a finite dimensional function space
P on a reference element S and the (one to one) mapping A° from the reference element S to
S. For this class the dependency on the actual element S is fully described by the mapping
A5, For example, all Lagrange finite elements belong to this class.

Secondly, finite element functions depending on the actual element S. Hence, the basis
functions are not fully described by P and the one to one mapping \°. But using an ini-
tialization of the actual element (which defines a finite dimensional function space P with
information about the actual element), we can implement this class in the same way as the
first one. This class is needed for Hermite finite elements which are not affine equivalent
to the reference element. Examples in 2d are the Hsieh—Clough—Tocher or HCT element or
the Argyris element where only the normal derivative at the midpoint of edges are used in
the definition of finite element functions; both elements lead to functions which are globally
C*(9). The concrete implementation for this class in ALBERTA is future work.

All in all, for a very general situation, we only need a vector of basis functions (and their
derivatives) on S and a function which connects each of these basis functions with its degree of
freedom on the element. For the second class, we additionally need an initialization routine for

16 CHAPTER 1. CONCEPTS AND ABSTRACT ALGORITHMS

the actual element. By such information, every finite element function is uniquely described
on every element of the grid.

1.4.1 Barycentric coordinates

For describing finite elements on simplicial grids, it is very convenient to use d+ 1 barycentric
coordinates as a local coordinate system on an element of the triangulation. Using d 41 local
coordinates, the reference simplez S is a subset of a hyper surface in R*+1:

d
5 = {()\0,...,/\d) ERdJrl;)\k > 07 Z)\k = 1}
k=0

On the other hand, for numerical integration on an element it is much more convenient to
use the standard element S € R? defined in Section 1.1 as

S = conv hull{ap = 0,41 = e1,...,aq = €4}

where e; are the unit vectors in R%; using S for the numerical integration, we only have to
compute the determinant of the parameterization’s Jacobian and not Gram’s determinant.
The relation between a given simplex S, the reference simplex S, and the standard simplex
S is now described in detail.
Let S be an element of the triangulation with vertices {ao,...,aq}; let Fs: S — S be the
diffeomorphic parameterization of S over S with regular Jacobian D Fyg, such that

Fs(ay) = ax, k=0,....d

holds. For a point x € S we set
&=F;'(z)€S.

For a simplex S the easiest choice for Fg is the unique affine mapping (1.1) defined on page 2.
For an affine mapping, D Fg is constant. In the following, we assume that the parameterization
Fg of a simplex S is affine.

For a simplex S the barycentric coordinates

M) = (AS,...,2\])(z) € R
of some point z € R? are (uniquely) determined by the (d + 1) equations

Z)\f(x) ap = and Z)\f(:ﬁ) = 1.

d d
k=

0 k=0

The following relation holds:
res iff A(x)e[0,1] forallk=0,...,d if N eS.

On the other hand, each A € S defines a unique point z° € S by

d
xs()\) = Z /\k Q..
k=0

1.4. FINITE ELEMENT SPACES AND FINITE ELEMENT DISCRETIZATION 17

Thus, 2°: § — S is an invertible mapping with inverse A\%: S — S. The barycentric coordi-
nates of = on S are the same as those of & on S, i.e. \%(x) = X% (&).

In the general situation, when Fg may not be affine, i.e. we have a parametric element,
the barycentric coordinates A° are given by the inverse of the parameterization Fg and the
barycentric coordinates on S:

X(2) = X¥(#) = A5 (Fg ()

and the world coordinates of a point z° € S with barycentric coordinates A are given by

d
#5(\) = Fs (Z /\kdk) ~ Fg (xs()\))
k=0
(see also Figure 1.18).
S S

Fs' AS:)‘goFgl F/nyOFS
. S
S

A~ — N

AS x
Figure 1.18: Definition of A%: § — § via F§1 and)\S, and 25: § — S via #° and Fg

Every function f: S — V defines (uniquely) two functions

fﬁ 5 -V f;
Ao f@(N)

and

2 U

- V
= [(Fs(2)).
Accordingly, f : § — V defines two functions f:S—=Vand f: S - V,and f: S - V
defines f: S — Vand f: S — V.

Assuming that a function space P C C°(S) is given, it uniquely defines function spaces P
and Pg by

P= {@ECD(S'); @6[@} and Pg = {goGC’O(S); ¢ € P}. (1.3)

We can also assume that the function space P is given and this space uniquely defines P and
Pg in the same manner. In ALBERTA, we use the function space P on S; the implementation
of a basis {@1, R cﬁm} of P is much simpler than the implementation of a basis {@1, cee Am}
of P as we are able to use symmetry properties of the barycentric coordinates A.

In the following we shall often drop the superscript S of A* and 2°. The mappings \(z) =
A9 (z) and x(A\) = 2()\) are always defined with respect to the actual element S € S.

1.4.2 Finite element spaces

ALBERTA supports scalar and vector valued finite element functions. The basis functions are
always real valued; thus, the coefficients of a finite element function in a representation by
the basis functions are either scalars or vectors of length n.

18 CHAPTER 1. CONCEPTS AND ABSTRACT ALGORITHMS

For a given function space P and some given real valued function space C on €, a finite
element space X}, is defined by

Xp=Xu(S,P,0)={peC; gpsePgforall SeS§}
for scalar finite elements. For vector valued finite elements, X} is given by
Xn=Xn(S,P,0) ={o=(p1,---,n) €C"; s €Pg foralli=1,...,n, S € S}.

The spaces Pg are defined by P via (1.3).

For conforming finite element discretizations, C' is the continuous space X (for 2nd or-
der problems, C = X = H'(Q)). For non-conforming finite element discretizations, C' may
control the non conformity of the ansatz space which has to be controlled in order to obtain
optimal error estimates (for example, in the discretization of the incompressible Navier—Stokes
equation by the non—conforming Crouzeix—Raviart element, the finite element functions are
continuous only in the midpoints of the edges).

The abstract definition of finite element spaces as a triple (mesh, local basis functions,
and DOFs) now matches the mathematical definition as X;, = X,(S,P,C) in the following
way: The mesh is the underlying triangulation S, the local basis functions are given by the
function space P, and together with the relation between global and local degrees of freedom
every finite element function satisfies the global continuity constraint C'. This relation between
global and local DOF's is now described in detail.

1.4.3 Evaluation of finite element functions

Let {@1, .. .,@m} be a basis of P and let {¢1,...,¢n} be a basis of Xj,, N = dimX}, such
that for every S € S and for all basis functions ¢; which do not vanish on S

pils(@(\) =¢'(N) forallxe S

holds with some i € {1,...,m} depending on j and S. Thus, the numbering of the basis
functions in P and the mapping z° induces a local numbering of the non vanishing basis
functions on S. Denoting by Jg the index set of all non vanishing basis functions on S, the
mapping is : Jg — {1,...,m} is one to one and uniquely connects the degrees of freedom of a
finite element function on S with the local numbering of basis functions. If jg: {1,...,m} —
Jg denotes the inverse mapping of ¢g, the connection between global and local basis functions
is uniquely determined on each element S by

pi(x(\) =@ (\), forall Ae S, je Js, (1.4a)
Pisn) (@A) = @'(N), forall \€ S,i¢€{1,...,m}. (1.4b)

For up € X}, denote by (u1,...,un) the global coefficient vector of the basis {¢;} with
uj € R for scalar finite elements, u; € R" for vector valued finite elements, i.e.

N
up(x) = Zujcpj(:v) for all x € Q,
j=1

and the local coefficient vector

(u}g, . ,U?) = (Ujs(l)a e vujs(m))

1.4. FINITE ELEMENT SPACES AND FINITE ELEMENT DISCRETIZATION 19

of up on S with respect to the local numbering of the non vanishing basis functions (local
numbering is denoted by a superscript index and global numbering is denoted by a subscript
index). Using the local coefficient vector and the local basis functions we obtain the local
representation of uy on S:

up () = Zus ¢'(Mz)) forallzeS.

In finite element codes, finite element functions are not evaluated at world coordinates x as
in (1.4.3), but they are evaluated on a single element S at barycentric coordinates A on S
giving the value at the world coordinates x(\):

up(z(N)) = Zus ¢'(\) forallxeS.

The mapping jg, which allows the access to the local coefficient vector from the global one, is
the relation between local DOFs and global DOF's. Global DOF's for a finite element space are
stored on the mesh elements at positions which are known to the DOF administration of the
finite element space. Thus, the corresponding DOF administration will provide information
for the implementation of the function jg and therefore information for reading/writing local
coefficients from/to global coefficient vectors (compare Section 3.5.1).

1.4.3.1 Evaluating derivatives of finite element functions

Derivatives of finite element functions are also evaluated on single elements S in barycentric
coordinates. In the calculation of derivatives in terms of the basis functions @', the Jacobian
A = Ag € RIXPIMOFVWORLD f the barycentric coordinates on S is involved (we consider here
only the case d = DIM_OF_WORLD = n):

M1 () Aozs(®) - Aog,(w) - Vo(2)' -
Az) = : : : = :
M () Ao (T) - Agg,(2) — Vg(z)t -

Now, using the chain rule we obtain for every function ¢ € Pg

d
Vo(z) =V (g(A(@) = Y &aA@)Vik(2) = A(2)Vg(A(x), z€S
k=0
and .
D?p(x) = A (2) D3g(M(x))A(x) + > D*Me(x) @a, (M), z €S
k=0

For a simplex S with an affine parameterization Fg, Vg is constant on S and we get
Vo(z) = AVi@(A(z)) and D?*p(z) = A'D3g(\(x))A, xeS.

Using these equations, we immediately obtain

Vup(z) = A'(x) > usVa@'(Mz), x€S
=1

20 CHAPTER 1. CONCEPTS AND ABSTRACT ALGORITHMS

and
m
D?uy(x ZUSD -f—ZDQ)\k Z SSOAk), x el

Since the evaluation is actually done in barycentric coordinates, this turns on .S into
Vup(z(N) = A'(z(N)) i usVag'(A), AES
and
D?up,(z(N) = Af(z(N)) Em: uly D3GH(N)A)+ Z D>\ (x Em: s @'y, (A AesS.
i=1 i—1

Once the values of the basis functions, its derivatives, and the local coefficient vector
(u}g, ...,u%) are known, the evaluation of uj, and its derivatives depends only on A and can
be performed by some general evaluation routine (compare Section 4.3).

1.4.4 Interpolation and restriction during refinement and coarsening

We assume the following situation: Let S be a (non—parametric) simplex with children Sy and
S1 generated by the bisection of S (compare Algorithm 1.1.5). Let Xg, Xg, g, be the finite
element spaces restricted to S and Sy U Sy respectively.

Throughout this section we denote by {goi}izl,wm the basis of the coarse grid space Xg

and by {W}j:l,...,k the basis functions of Xg,us,. For a function u; € Xg we denote by
Uy, = (u}o, .., ul!)" the coefficient vector with respect to the basis {¢"} and for a function
vp € Xsous, by vy = (vi}, ... ,’U{Z)t the coefficient vector with respect to {@ZJj}.

We now derive equations for the transformation of local coefficient vectors for finite element
functions that are interpolated during refinement and coarsening, and for vectors storing
values of a linear functional applied to the basis functions on the fine grid which are restricted
to the coarse functions during coarsening.

Let

]Ingl : XS — XSOUS1

be an interpolation operator. For nested finite element spaces, i.e. Xg C Xg,us,, every coarse
grid function up € Xg belongs also to Xg,us,, so the natural choice is]Ig 0.5 = id on Xg (for

example, Lagrange finite elements are nested). The interpolants]IS 5130‘ can be written in
terms of the fine grid basis functions

k
13,.5,%" = Z aijy?
j=1
defining the (m x k)-matrix
A ((I/L])zj 11, 4444444 7]7;, (15)

This matrix A is involved in the interpolation during refinement and the transformation of a
linear functional during coarsening.

1.4. FINITE ELEMENT SPACES AND FINITE ELEMENT DISCRETIZATION 21

For the interpolation of functions during coarsening, we need an interpolation operator
JISO’Sl Xs,us, = Xg. The interpolants]ISO’S1 Y7 of the fine grid functions can now be repre-
sented by the coarse grid basis

Iy = wa o

defining the (m x k)-matrix
B — (bz])l 1,....m. (16)

Jj=1,..., k

This matrix B is used for the interpolation during coarsening.

Both matrices depend only on the set of local basis functions on parent and children. Thus,
they depend on the reference element S and one single bisection of the reference element into
S0, S1. The matrices do depend on the local numbering of the basis functions on the children
with respect to the parent. Thus, in 3d the matrices depend on the element type of S also
(for an element of type 0 the numbering of basis functions on S; differs from the numbering
on S; for an element of type 1, 2). But all matrices can be calculated by the local set of basis
functions on the reference element.

DOFs can be shared by several elements, compare Section 1.3. Every DOF is connected
to a basis function which has a support on all elements sharing this DOF. Each DOF refers to
one coefficient of a finite element function, and this coefficient has to be calculated only once
during interpolation. During the restriction of a linear functional, contributions from several
basis functions are added to the coefficient of another basis function. Here we have to control
that for two DOF's, both shared by several elements, the contribution of the basis function
at one DOF is only added once to the other DOF and vice versa. This can only be done by
performing the interpolation and restriction on the whole refinement/coarsening patch at the
same time.

1.4.4.1 Interpolation during refinement

Let u, = (u}o,...,
respect to {gpi}, and let uy = (u}z), . d)) the coefficient vector of]IS 5, Uk with respect to

{¢7}. Using matrix A defined in (1.5) we conclude

HSO,S1uh - Zu H50751 Zu Za” Q’Z)j Z ()J ¢j’
Jj=

7j=1

ugL)t be the coefficient vector of a finite element function u; € Xg with

or equivalently
Uy = Atu¢.

A subroutine which interpolates a finite element function during refinement is an efficient
implementation of this matrix—vector multiplication.

1.4.4.2 Restriction during coarsening

In an (Euler, e.g.) discretization of a time dependent problem, the term (uzld, ©i) 12(Q) appears
on the right hand side of the discrete system, where u‘flld is the solution from the last time step.
Such an expression can be calculated exactly, if the grid does not change from one time step

to another. Assuming that the finite element spaces are nested, it is also possible to calculate

22 CHAPTER 1. CONCEPTS AND ABSTRACT ALGORITHMS

this expression exactly when the grid was refined, since uzld belongs to the fine grid finite
element space also. Usually, during coarsening information is lost, since we can not represent
uzld exactly on a coarser grid. But we can calculate (uzld,wi) r2(o) exactly on the fine grid;
using the representation of the coarse grid basis functions ¢; by the fine grid functions v;, we
can transform data during coarsening such that (uzld, ¢i)r2(q) is calculated exactly for the
coarse grid functions too.

More general, assume that the finite element spaces are nested and that we can evaluate
a linear functional f exactly for all basis functions of the fine grid. Knowing the values
fo=UF0N, . (f YF))t for the fine grid functions, we obtain with matrix A from (1.5)

for the values f,, = ((f, ob, ... (f, ™))t on the coarse grid
fo=Afy

since
k k
O = (£, D ai?) = ayf,)
j=1 Jj=1

holds (here we used the fact, that]I:gm s, = td on Xg since the spaces are nested).

Thus, given a functional f which we can evaluate exactly for all basis functions of a grid
S and its refinements, we can also calculate (f, ©") exactly for all basis functions ¢* of a grid
S obtained by refinement and coarsening of S in the following way: First refine all elements of
the grid that have to be refined; calculate (f, ¢) for all basis functions ¢ of this intermediate
grid; in the last step coarsen all elements that may be coarsened and restrict this vector during
each coarsening step as described above.

In ALBERTA the assemblage of the discrete system inside the adaptive method can be split
into three steps: one initialization step before refinement, the second step between refinement
and coarsening, and the last, and usually most important, step after coarsening, when all grid
modifications are completed, see Section 4.8.1. The second assemblage step can be used for
an exact computation of a functional (f,) as described above.

1.4.4.3 Interpolation during coarsening

Finally, we can interpolate a finite element function during coarsening. The matrix for trans-
forming the coefficient vector u,, = (u11ﬁ’ . uw) of a fine grid function wj to the coefficient

oy ugl)t of the interpolant on the coarse grid is given by matrix B defined

— (1
vector ug = (U, . -

n (1.6):

S,S So,S J 150,58
T Y E WE

7j=1 7=1
k: .
SNDITEDS wa% o'
j=1 i=1 i=1 \j=1
Thus we have the following equation for the coefficient vector of the interpolant of uy:
Uy, = Buy,.

In contrast to the interpolation during refinement and the above described transformation of
a linear functional, information is lost during an interpolation to the coarser grid.

1.4. FINITE ELEMENT SPACES AND FINITE ELEMENT DISCRETIZATION 23

1.4.1 Example (Lagrange elements). Lagrange finite elements are connected to Lagrange
nodes x'. For linear elements, these nodes are the vertices of the triangulation, and for
quadratic elements, the vertices and the edge—midpoints. The Lagrange basis functions {gol}
satisfy
QOZ(J,‘]) :(51']' for i,j = 1,...,dith.
Consider the situation of a simplex S with children Sy, S7. Let {(‘Oi}izl,...,m be the Lagrange
basis functions of Xg with Lagrange nodes {xfo}zzlm on S and {wj }i=1,..k be the Lagrange
basis functions of Xg,us, with Lagrange nodes {xfp}]zlk on SopU S7. The Matrix A is then
given by '
aij:goi(xfp), i=1,....m,j7=1,...)k

and matrix B is given by

bij =7 (x), i=1,...,m j=1,... k.
1.4.5 Discretization of 2nd order problems

In this section we describe the assembling of the discrete system in detail. We consider the
following second order differential equation in divergence form:

Lu:=—-V -AVu+b-Vu+cu=f in Q, (1.7a)
u=yg onI'p, (1.7b)
Vo AVu =0 on I'y, (1.7¢)

where A € L®(Q;R™ "), b € LR, ¢ € L®(Q), and f € L*(Q2). By I'p C 99 (with
IT'p| # 0) we denote the Dirichlet boundary and we assume that the Dirichlet boundary
values g: I'p — R have an extension to some function g € H(Q).

By I';v = 0Q\I'p we denote the Neumann boundary, and by v, we denote the outer
unit normal vector on 9. The boundary condition (1.7c) is a so called natural Neumann
condition.

Equations (1.7) describe not only a simple model problem. The same kind of equations
result from a linearization of nonlinear elliptic problems (for example by a Newton method)
as well as from a time discretization scheme for (non-) linear parabolic problems.

Setting

X =H0YQ) and X:{veﬂl(Q);v:OOnFD}

this equation has the following weak formulation: We are looking for a solution v € X, such
that v € g+ X and

/ (Veo(z)) - Ax)Vu(z) + o) b(z) - Vu() + ofz) pla) u(z) de = / f(@) plx)dz (18)
Q Q

for all ¢ € X
Denoting by X* the dual space of X we identify the differential operator L with the linear
operator L € £(X, X™*) defined by

(Lv, @) ek ZZ/QV(,O'AV’U—F/QQOIJ‘V’U—F/QCQOU for all v, € X

24 CHAPTER 1. CONCEPTS AND ABSTRACT ALGORITHMS

and the right hand side f with the linear functional f € X* defined by

<F, g0>)%*x)c(:z/f(p forallwe)o(.
Q

With these identifications we use the following reformulation of (1.8): Find u € X such
that
ucg+X: Lu=f in X* (1.9)

holds.
Suitable assumptions on the coefficients imply that L is elliptic, i.e. there is a constant
C = Cap,n such that

(Lo, @) 4o 2 Cllellx forall p € X.

The existence of a unique solution u € X of (1.9) is then a direct consequence of the Lax—
Milgram—Theorem.

We consider a finite dimensional subspace X; C X for the discretization of (1.9) with
N = dim X;. We set)D(h = XN X with N = dim)O(h. Let g5, € X}, be an approximation of
g € X. A discrete solution of (1.9) is then given by: Find u; € X}, such that

up € gn + Xy, Lup=f in X;;, (1.10)

i.e.
up € gn + Xp (Lup, 80h>)°(;§><)°(h =(/, <Ph>)}—;;><)2—h for all ¢, € X),

holds. If L is elliptic, we have a unique discrete solution u, € X}, of (1.10), again using the
Lax—Milgram—Theorem.

Choose a basis {901, el cpN} of X} such that {901, e QON} is a basis of)Q(h. For a function
vy, € X, we denote by v = (v1,...,vy) the coefficient vector of vy, with respect to the basis

{cpl,...,goN}, ie.
N

Vhp = Z’Uj(pj.

=1

Using (1.10) with test functions ¢;, i = 1,... ,]\Of , we get the following N equations for the
coefficient vector w = (uq,...,un) of up:

N
Zuj<Lg0j,g0i>)n(;X)n(h:<f, 90i>)°(;x)°(h fori=1,...,N,
j=1
U; = g; fori:]\of—l-l,...,N.
Defining the system matriz L by
(Lo, 1) o (Log 1) (Logyr 1) o (Loy ¢1)]
(Lot o) - (Lens o) (Leign on) - (Loys @)
L= 0 0 10 0 (1.11)
0 0 0 1 0
: 0 0 0 :
i 0 0 0 0 1 i

1.4. FINITE ELEMENT SPACES AND FINITE ELEMENT DISCRETIZATION 25

and the right hand side vector or load vector f by
[<f7 901> i

fi= <f’ (70]\7> (1.12)

IN+1

L 9y

we can write the discrete equations as the linear N x N system
Lu=Ff, (1.13)

which has to be assembled and solved numerically.

1.4.6 Discretization of coupled vector valued problems

This section describes the discretization and assembling of coupled vector valued problems.
Consider the following artificial coupled Poisson problem:

Let C € R™™ be a regular coupling matrix, f € L?(2;R") a given right hand side, and
g: 00 — R"™ suitable boundary values. Find u : Q — R” with

- ZCWAU,, = fu inQforp=1,...,n (1.14a)
v=1

u=yg on 012, (1.14b)

By a left multiplication with C~! this problem decouples into a set of independent scalar
Poisson problems, for which we could apply the same existence and uniqueness theory as
above. However, we will refrain from doing this in order to illustrate the concepts of this
section. Generally, the weak form of a coupled system of linear second order equations can be
written as follows:

Define vector valued spaces X = H*((; R"), X = HZ(Q;R™). Find a solution u € X, such
that uEg—FX and

(Lu, g0>)c(*x)c(= Z /QVQO#-A“”Vul,—i—(p#b“"-Vuy+c’“’<p“u,,dx:/Qf-god:c (1.15)

pr=1

for all ¢ € X.

To obtain the weak form of problem (1.14) for example, we would set b := 0, ¢ := 0 and
Afj” := 0;jCyu. The next step is to derive a suitable linear system for a discretization as in
the last section.

As mentioned in Section 1.4.2, basis functions are always scalar-valued. To gain a vector
valued finite element space X}, we use vector valued coefficients. Choose a set of scalar basis
functions {cpl,...,cpN} as above. For a function v, € X} we denote by v = (v1,...,vN)
the coefficient vector of v. Each v; is now itself a vector v; = (vj,);;—;. Thus, we have the

following decomposition:
N
Vhp = Z ’Uj(pj.
j=1

26 CHAPTER 1. CONCEPTS AND ABSTRACT ALGORITHMS

Define <,0§-‘ := (0,w;j)p—1- The discrete problem can now be written as a set of linear equations
for the coefficients w,:

N n
ZZUJN<L"O?’ 4,02'-’>)2;:X)2h =, g0;’>)°<;;x5<h fori=1,...,N;v=1,...,n,

j=1 p=1
Wiy = Giv fori:N+1,...,N;V:1,...,n.
The corresponding system matrix L is defined by
AU AR AL SR ALl
L=10 .. o0 I 0 ... 0 (1.16)

0 0 0 I 0
: 0 0 0 :

| 0 0 0 0 I

with I € R™™™ an identity matrix and
LY = (Lt @?>;§;X;§h)ﬁ,yz1-
The load vector f is defined by) _
(f, 91)
(f, ¢7)
1
(o) (1.17)

(5 o)

IN+1.1

9Nd

The problem can now be written as the linear Nd x Nd system
Lu=f, (1.18)

which has to be assembled and solved. The organization of vectors and matrices using small
n-size blocks as components was chosen with the goal of efficient cache usage during matrix-
vector multiplication.

1.4.7 Numerical quadrature

For the assemblage of the system matrix and right hand side vector of the linear system
(1.13), we have to compute integrals, for example

/Q f(@)pila) d.

1.4. FINITE ELEMENT SPACES AND FINITE ELEMENT DISCRETIZATION 27

For general data A, b, ¢, and f, these integrals can not be calculated exactly. Quadrature for-
mulas have to be used in order to calculate the integrals approximately. Numerical integration
in finite element methods is done by looping over all grid elements and using a quadrature
formula on each element.

1.4.2 Definition (Numerical quadrature). A numerical quadrature Q on S is a set {(wy, A\) €
R x Rk = 0,...,ng — 1} of weights wy, and quadrature points A\, € S (i.e. given in
barycentric coordinates) such that

ng—1

[£@)di = Q) = Y wnfan)

k=0

It is called exact of degree p for some p € N if
/q(@) di = Q(q) for all ¢ € P,(S).
S

It is called stable if
wg >0 forall kK =0,...,nq — 1.

1.4.3 Remark. A given numerical quadrature Q on S defines for each element S a numer-
ical quadrature (Qg. Using the transformation rule we define Qg on an element S which is
parameterized by Fs: S — S and a function f: .5 — R:

ng—1

/Sf(iﬂ) dr ~ Qs(f) = Q((f o F)|det DFs|) = > wy.f(x(Ar))| det DFs(2(\g)]-

k=0
For a simplex S this results in

ng—1

Qs(f) =d'|S| > wf(x(\)).
k=0

1.4.8 Finite element discretization of 2nd order problems

Let P be a finite dimensional function space on S with basis {!, ..., ®™}. For a conforming
finite element discretization of (1.8) we use the finite element space Xj = X,(S,P, X). For
this space X}, is given by Xh(S,P,)z').

By the relation (1.4a) for global and local basis functions, we obtain for the jth component
of the right hand side vector f

mmzémmmm=zémwmm: 3 Amwmwwm

Ses SeS

SCsupp(e;)

.S /MWWWWM@wmwm
Ses
SCsupp(¢;)

where S is parameterized by Fg: S — S. The above sum is reduced to a sum over all
S C supp(p;) which are only few elements due to the small support of ;.

28 CHAPTER 1. CONCEPTS AND ABSTRACT ALGORITHMS

The right hand side vector can be assembled in the following way: First, the right hand
side vector is initialized with zeros. For each element S of S we calculate the element load

vector fg = (f&, ..., fi)!, where
fi = /Sf(FS(i))go"(/\(i)ﬂdet DFg(3)|di, i=1,...,m. (1.19)

Denoting again by jgs : {1,...,m} — Jg the function which connects the local DOFs with
the global DOFs (defined in (1.4b)), the values f% are then added to the jg(i)th component
of the right hand side vector f,i=1,...,m.

For general f, the integrals in (1.19) can not be calculated exactly and we have to use a
quadrature formula for the approximation of the integrals (compare Section 1.4.7). Given a
numerical quadrature Q on S we approximate

ng—1
FemQ((foFs) (@ oN)|det DFs|) = > wif(x(A\)) @ (M)l det DFg(&(M\p). (1.20)
k=0
For a simplex S this is simplified to
ng—1

femdl]S] D wif(2(Ar) @' (M)
k=0

In ALBERTA, information about values of basis functions and its derivatives as well as
information about the connection of global and local DOFs (i.e. information about jg) is
stored in special data structures for local basis functions (compare Section 3.5). By such
information, the element load vector can be assembled by a general routine if a function for
the evaluation of the right hand side is supplied. For parametric elements, a function for
evaluating |det DFg| is additionally needed. The assemblage into the global load vector f
can again be performed automatically, using information about the connection of global and
local DOFs.

The calculation of the system matrix is also done element—wise. Additionally, we have to
handle derivatives of basis functions. Looking first at the second order term we obtain by the
chain rule (1.4.3.1) and the relation (1.4) for global and local basis functions

/SV%'(:B) - A(2)V;(z) de = g V(@ o N)(2) - A(@)V ("D 0 \)(x) do

= | Y@ U\@)) - (Alz) Ax) A'(2))Vap'sV (A(2)) da,

where A is the Jacobian of the barycentric coordinates A on S. In the same manner we obtain
for the first and zero order terms

/%‘(w) b(x) - V() dx:/%"iS(i)(A(HC))(A(x) b(x)) - Vag" W (A(w)) da
S S

and

/ () i(z) ;) dz = / () ¢ (A(2)) 50 (A(x)) di.
S S

1.4. FINITE ELEMENT SPACES AND FINITE ELEMENT DISCRETIZATION 29

Using on S the abbreviations
AN = (@r(N)y =, = | det DEs(2(N))] A(z(N)) A(z(N)) A'(z(N)),
b(\) := (EI(A))lzo,...,d := |det DFg(&(\))| A(z(N\)) b(z(N\)), and
2(\) = | det DFs(2(\)] e(z (V)

and transforming the integrals to the reference simplex, we can write the element matriz
Ls = (Lg)ij=1,..m as

L= /S VG (@) - AN@)) P (@) di + / F(M@)) BA)) - Vag (M) di

S

+ [er@) (1@ $ @) da (121)
S

or writing the matrix—vector and vector—vector products explicitly

d
LY = Z / g (A mk@(ae))@alu@))damlz /S Bi(A(@)) @' (\(#)) @, (M(#)) di
=0

k,1=0

1,7 =1,...,m. Using quadrature formulas Qg, Ql, and Qo for the second, first and zero order
term we approximate the element matrix

d d
LI~ Qo | D (angly, @) oA | + @ (Z(bl ¢ @) A) + Qo((é@i @’)o A)7

k,1=0 =0

1,7 =1,...,m. Having access to functions for the evaluation of
akl()‘q)a El()‘q)7 E(/\q)

at all quadrature points A\, on S, Lg can be computed by some general routine. The assemblage
into the system matrix can also be done automatically (compare the assemblage of the load
vector).

1.4.4 Remark. Due to the small support of the global basis function, the system matrix is
a sparse matrix, i.e. the maximal number of entries in all matrix rows is much smaller than
the size of the matrix. Special data structures are needed for an efficient storage of sparse
matrices and they are described in Section 3.3.4.

1.4.5 Remark. The calculation of the gradient of the barycentric coordinates A(z(\)) usually
involves the determinant of the parameterization’s Jacobian |det DFg(Z()))|. Thus, a calcu-
lation of |det DFs(Z(A\))| A(x(N)) A(z(N\)) AY(z(N\)) may be much faster than the calculation
of A(x(\)) A(z(\)) Al(x()\)) only; the same holds for the first order term.

Assuming that the coefficients A, b, and ¢ are piecewise constant on a non—parametric
triangulation, A(X), b(\), and ¢(\) are constant on each simplex S and thus simplified to

As—(_)kl 0, d—d"S’AAwAt BS:(Bl)l:07_..7d:d!’S|Ab\Sy ESZd!’S’qs.

30 CHAPTER 1. CONCEPTS AND ABSTRACT ALGORITHMS

For the approximation of the element matrix by quadrature we then obtain

Lg ~ Zd: Q2 ((‘P A)) Zd:b (2l e)‘) +25Qo (@i #)e A) (1.22)
k=0

=0

1,7 = 1,...,m. Here, the numerical quadrature is only applied for approximating integrals
of the basis functions on the standard simplex. Theses values can be computed only once,
and can then be used on each simplex S. This will speed up the assembling of the system
matrix. Additionally, for polynomial basis functions we can use quadrature formulas which
integrate these integrals exactly. So far we have only considered the case of scalar problems.
The transition to (coupled) vector valued problems is straight forward and simply involves
two more indices. The entries of the element matrix are now d x d matrices themselves:

Ly = [Vo) A7) Vis(0) + () ¥ (2) - Vi) + (@) i)) d
= [BEQ@) - AT O@) BF @) + [F @) B - P (@) di

/S 7 (A(2)) #(M@)) @ (M) di,

with
AR (N) = (@ (V) pymg...q = | det DEs(2(N)] A(z (X)) A (z(X)) A (z(N)),
b (N) = (Béﬂl(/\))lzo,...,d :=|det DFg(&(\))|A(z(N)) " (z(N)), and
& (\) = | det DFs((\)] ¢ (x())
for u,v =1,...,d. The approximation of the integrals using quadratures is done analogously

to the scalar case.

As a result, using information about values of basis functions and their derivatives, and
information about the connection of global and local DOF's, the linear system can be assem-
bled automatically by some general routines. Only functions for the evaluation of given data
have to be provided for special applications. The general assemble routines are described in
Section 4.7.

1.5 Adaptive Methods

The aim of adaptive methods is the generation of a mesh which is adapted to the problem
such that a given criterion, like a tolerance for the estimated error between exact and discrete
solution, if fulfilled by the finite element solution on this mesh. An optimal mesh should
be as coarse as possible while meeting the criterion, in order to save computing time and
memory requirements. For time dependent problems, such an adaptive method may include
mesh changes in each time step and control of time step sizes.

The philosophy implemented in ALBERTA is to change meshes successively by local re-
finement or coarsening, based on error estimators or error indicators, which are computed a
posteriori from the discrete solution and given data on the current mesh.

1.5. ADAPTIVE METHODS 31

1.5.1 Adaptive method for stationary problems

Let us assume that a triangulation S of 2, a finite element solution u;, € Xp to an elliptic
problem, and an a posteriori error estimate

1/p
lu—unll < nlun) = (Zns(%)p) , p€[l,0) (1.23)

SesS

on this mesh are given. If tol is a given allowed tolerance for the error, and n(uy) > tol, the
problem arises

e where to refine the mesh in order to reduce the error,

e while at the same time the number of unknowns should not become too large.

A global refinement of the mesh would lead to the best error reduction, but the amount of new
unknowns might be much larger than needed to reduce the error below the given tolerance.
Using local refinement, we hope to do much better.

The design of an “optimal” mesh, where the number of unknowns is as small as possible to
keep the error below the tolerance, is an open problem and will probably be much too costly.
Especially in the case of linear problems, the design of an optimal mesh will be much more
expensive than the solution of the original problem, since the mesh optimization is a highly
nonlinear problem. Usually, some heuristic arguments are then used in the algorithm. The
aim is to produce a result that is “not too far” from an optimal mesh, but with a relatively
small amount of additional work to generate it.

Several adaptive strategies are proposed in the literature, that give criteria which mesh
elements should be marked for refinement. All strategies are based on the idea of an equidis-
tribution of the local error to all mesh elements. Babuska and Rheinboldt [3] motivate that
a mesh is almost optimal when the local errors are approximately equal for all elements. So,
elements where the error indicator is large will be marked for refinement, while elements with
a small error indicator are left unchanged.

The general outline of the adaptive algorithm for a stationary problem is the following.
Starting from an initial triangulation Sy, we produce a sequence of triangulations Sy, for
k=1,2,..., until the estimated error is below the given tolerance:

1.5.1 Algorithm (General adaptive refinement strategy).

Start with Sy and error tolerance tol

k:=0
solve the discrete problem on Si
compute global error estimate 7 and local indicators ng, S € Sk
while n > tol do

mark elements for refinement (or coarsening)

adapt mesh Sj, producing Sk

k=k+1

solve the discrete problem on S

compute global error estimate 7 and local indicators ng, S € Sk
end while

32 CHAPTER 1. CONCEPTS AND ABSTRACT ALGORITHMS

1.5.2 Mesh refinement strategies

Since a discrete problem has to be solved in every iteration of this algorithm, the number of
iterations should be as small as possible. Thus, the marking strategy should select not too
few mesh elements for refinement in each cycle. On the other hand, not much more elements
should be selected than is needed to reduce the error below the given tolerance.

In the sequel, we describe several marking strategies that are commonly used in adaptive
finite element methods.

The basic assumption for all marking strategies is the fact that the mesh is “optimal” when
the local error is the same for all elements of the mesh. This optimality can be shown under
some heuristic assumptions, see [3]. Since the true error is not know we try to equidistribute
the local error indicators. This is motivated by the lower bound for error estimators of elliptic
problems. This lower bound ensures that the local error is large if the local indicator is large
and data of the problem is sufficiently resolved [2, 57]. As a consequence, elements with a large
local error indicator should be refined, while elements with a very small local error indicator
may be coarsened.

Global refinement: The simplest strategy is not really “adaptive” at all, at least not
producing a locally refined mesh. It refines the mesh globally, until the given tolerance is
reached.

If an a priori estimate for the error in terms of the maximal size of a mesh element h is
known, where the error is bounded by a positive power of h, and if the error estimate tends
to zero if the error gets smaller, then this strategy is guaranteed to produce a mesh and a
discrete solution which meets the error tolerance.

But, in most cases, global refinement produces far too much mesh elements than are
needed to meet the error tolerance.

Maximum strategy: Another very simple strategy is the maximum strategy. A threshold
~v € (0,1) is given, and all elements S € Sy with

> , 1.24
ns > 7 MAx s (1.24)

are marked for refinement. A small v leads to more refinement and maybe non—optimal
meshes, while a large v leads to more cycles until the error tolerance is reached, but usually
produces a mesh with less unknowns. Typically, a threshold value v = 0.5 is used when the
power p in (1.23) is p = 2 [56, 58].

1.5.2 Algorithm (Maximum strategy).

Given parameter 7 € (0,1)

Nmax = max(ng, S € Sg)
for all S in S; do

if 7g > Y Mmax then mark S for refinement
end for

1.5. ADAPTIVE METHODS 33

Equidistribution strategy: Let N be the number of mesh elements in Si. If we assume
that the error indicators are equidistributed over all elements, i. e. ng = ng for all S, S’ € Sy,
then

1/p
1 | tol
n = Z ng = Nk/pns = tol and ng = -
SeSy, Nk

We can try to reach this equidistribution by refining all elements where it is violated because

the error indicator is larger than tol/N ,{1:/ P To make the procedure more robust, a parameter
6 € (0,1), 8 ~ 1, is included in the method.

1.5.3 Algorithm (Equidistribution strategy[31]).

Start with parameter 6 € (0,1), 6~ 1

for all S in S, do

if ng > Htol/N;/p then mark S for refinement
end for

If the error n is already near tol, then the choice § = 1 leads to the selection of only very
few elements for refinement, which results in more iterations of the adaptive process. Thus, 6
should be chosen smaller than 1, for example # = 0.9. Additionally, this accounts for the fact
that the number of mesh elements increases, i. e. N1 > N, and thus the tolerance for local
errors will be smaller after refinement.

Guaranteed error reduction strategy: Usually, it is not clear whether the adaptive
refinement strategy Algorithm 1.5.1 using a marking strategy (other than global refinement)
will converge and stop. Dorfler [28] describes a strategy with a guaranteed error reduction for
the Poisson equation within a given tolerance.

We need the assumptions, that

- given data of the problem (like the right hand side) is sufficiently resolved by the initial
mesh Sy with respect to the given tolerance (such that, for example, errors from the
numerical quadrature are negligible),

- all edges of marked mesh elements are at least bisected by the refinement procedure
(using regular refinement or two/three iterated bisections of triangles/tetrahedra, for
example).

The idea is to refine a subset of the triangulation whose element errors sum up to a fixed
amount of the total error 7. Given a parameter 6, € (0, 1), the procedure is:

Mark a set A C S, such that Z ne > (1 —6,)PnP.
SeA

It follows from the assumptions that the error will be reduced by at least a factor k < 1
depending of 0, and data of the problem. Selection of the set A can be done in the following
way. The maximum strategy threshold + is reduced in small steps of size v € (0,1), v << 1,
until the maximum strategy marks a set which is large enough. This inner iteration is not
costly in terms of CPU time as no computations are performed.

34 CHAPTER 1. CONCEPTS AND ABSTRACT ALGORITHMS

1.5.4 Algorithm (Guaranteed error reduction strategy[23]).

Start with given parameters 6, € (0,1), v € (0,1)

Nmax = max(ng, S € Sg)

sum := 0

v =1

while sum < (1 —6,)PnP do
v = y—v

for all S in S; do
if S is not marked

if ns > Y Nmax
mark S for refinement

sum := sum + 1%
end if
end if
end for
end while
Using the above algorithm, Dérfler [27] describes a robust adaptive strategy also for the

nonlinear Poisson equation —Au = f(u). It is based on a posteriori error estimates and a
posteriori saturation criteria for the approximation of the nonlinearity.

1.5.5 Remark. Using this GERS strategy and an additional marking of elements due to
data approximation, Morin, Nochetto, and Siebert [11, 12, 43] could remove the assumption
that data is sufficiently resolved on Sy in order to prove convergence. The result is a simple
and efficient adaptive finite element method for linear elliptic PDEs with a linear rate of
convergence without any preliminary mesh adaptation.

Other refinement strategies: Babuska and Rheinboldt [3] describe an extrapolation
strategy, which estimates the local error decay. Using this estimate, refinement of elements is
done when the actual local error is larger than the biggest expected local error after refine-
ment.

Jarausch [33] describes a strategy which generates quasi-optimal meshes. It is based on
an optimization procedure involving the increase of a cost function during refinement and the
profit while minimizing an energy functional.

For special applications, additional information may be generated by the error estimator
and used by the adaptive strategy. This includes (anisotropic) directional refinement of ele-
ments [34, 52|, or the decision of local h— or p—enrichment of the finite element space [25, 15].

1.5.3 Coarsening strategies

Up to now we presented only refinement strategies. Practical experience indicates that for
linear elliptic problems, no more is needed to generate a quasi—optimal mesh with nearly
equidistributed local errors.

In time dependent problems, the regions where large local errors are produced can move
in time. In stationary nonlinear problems, a bad resolution of the solution on coarse meshes
may lead to some local refinement where it is not needed for the final solution, and the mesh

1.5. ADAPTIVE METHODS 35

could be coarsened again. Both situations result in the need to coarsen the mesh at some
places in order to keep the number of unknowns small.

Coarsening of the mesh can produce additional errors. Assuming that these are bounded
by an a posteriori estimate 7. g, we can take this into account during the marking procedure.

Some of the refinement strategies described above can also be used to mark mesh elements
for coarsening. Actually, elements will only be coarsened if all neighbour elements which are
affected by the coarsening process are marked for coarsening, too. This makes sure that
only elements where the error is small enough are coarsened, and motivates the coarsening
algorithm in Section 1.1.2.

The main concept for coarsening is again the equidistribution of local errors mentioned
above. Only elements with a very small local error estimate are marked for coarsening. On
the other hand, such a coarsening tolerance should be small enough such that the local error
after coarsening should not be larger than the tolerance used for refinement. If the error after
coarsening gets larger than this value, the elements would be directly refined again in the
next iteration (which may lead to a sequence of oscillating grid never meeting the desired
criterion).

Usually, an upper bound p for the mesh size power of the local error estimate is known,
which can be used to determine the coarsening tolerance: if

ns < chl,

then coarsening by undoing b bisections will enlarge the local error by a factor smaller than
2Hb/PIM " guch that the local coarsening tolerance tol. should be smaller than

tol,

tole < ub/DIM’

where tol, is the local refinement tolerance.

Maximum strategy: Given two parameters v > 7., refine all elements S with

D D
> 7y max
Ng > 7 Sres; Mg

and mark all elements S with
p P P
Mg + Mg < Ve hax s

for coarsening.

Equidistribution strategy: FEquidistribution of the tolerated error tol leads to

tol
N;/P

Ng ~ for all S e S.

If the local error at an element is considerably smaller than this mean value, we may coarsen
the element without producing an error that is too large. All elements with

tol
775>9L
N

k

36 CHAPTER 1. CONCEPTS AND ABSTRACT ALGORITHMS

are marked for refinement, while all elements with

tol
ns + Ne,s < 0. ~i/p
Nk:

are marked for coarsening.

Guaranteed error reduction strategy: Similar to the refinement in Algorithm 1.5.4,
Dorfler [29] describes a marking strategy for coarsening. Again, the idea is to coarsen a subset
of the triangulation such that the additional error after coarsening is not larger than a fixed
amount of the given tolerance tol. Given a parameter 6. € (0,1), the procedure is:

Mark a set B C Sy such that Z Mo +1h g < OEP.
SeB

The selection of the set B can be done similar to Algorithm 1.5.4.

1.5.6 Remark. When local h— and p—enrichment and coarsening of the finite element space
is used, then the threshold 6. depends on the local degree of finite elements. Thus, local
thresholds 6. s have to be used.

Handling information loss during coarsening. Usually, some information is irreversibly
destroyed during coarsening of parts of the mesh, compare Section 3.3.3. If the adaptive
procedure iterates several times, it may occur that elements which were marked for coarsening
in the beginning are not allowed to coarsen at the end. If the mesh was already coarsened, an
error is produced which can not be reduced anymore.

One possibility to circumvent such problems is to delay the mesh coarsening until the
final iteration of the adaptive procedure, allowing only refinements before. If the coarsening
marking strategy is not too liberal (6, not too large), this should keep the error below the
given bound.

Dorfler [29] proposes to keep all information until it is clear, after solving and by estimating
the error on a (virtually) coarsened mesh, that the coarsening does not lead to an error which
is too large.

1.5.4 Adaptive methods for time dependent problems

In time dependent problems, the mesh is adapted to the solution in every time step using
a posteriori error estimators or indicators. This may be accompanied by an adaptive control
of time step sizes, see below.

Bénsch [8] lists several different adaptive procedures (in space) for time dependent prob-
lems:

e Explicit strategy: The current time step is solved once on the mesh from the previous
time step, giving the solution uj,. Based on a posteriori estimates of uj, the mesh is
locally refined and coarsened. The problem is not solved again on the new mesh, and
the solve—estimate—adapt process is not iterated.

This strategy is only usable when the solution is nearly stationary and does not change
much in time, or when the time step size is very small. Usually, a given tolerance for
the error can not be guaranteed with this strategy.

1.5. ADAPTIVE METHODS 37

e Semi—implicit strategy: The current time step is solved once on the mesh from the
previous time step, giving an intermediate solution uy. Based on a posteriori estimates
of 1y, the mesh is locally refined and coarsened. This produces the final mesh for the
current time step, where the discrete solution uy, is computed. The solve—estimate—adapt
process is not iterated.

This strategy works quite well, if the time steps are not too large, such that regions of
refinement move too fast.

e Implicit strategy A: In every time step starting from the previous time step’s triangu-

lation, a mesh is generated using local refinement and coarsening based on a posteriori
estimates of a solution which is calculated on the current mesh. This solve—estimate—
adapt process is iterated until the estimated error is below the given bound.
This guarantees that the estimated error is below the given bound. Together with an
adaptive control of the time step size, this leads to global (in time) error bounds. If
the time step size is not too large, the number of iterations of the solve—estimate—adapt
process is usually very small.

e Implicit strategy B: In every time step starting from the macro triangulation, a mesh
is generated using local refinements based on a posteriori estimates of a solution which
is calculated on the current (maybe quite coarse) mesh; no mesh coarsening is needed.
This solve—estimate—adapt process is iterated until the estimated error is below the
given bound.

Like implicit strategy A, this guarantees error bounds. As the initial mesh for every
time step is very coarse, the number of iterations of the solve—estimate—adapt process
becomes quite large, and thus the algorithm might become expensive. On the other
hand, a solution on a coarse grid is fast and can be used as a good initial guess for finer
grids, which is usually better than using the solution from the old time step.

Implicit strategy B can also be used with anisotropically refined triangular meshes, see
[32]. As coarsening of anisotropic meshes and changes of the anisotropy direction are
still open problems, this implies that the implicit strategy A can not be used in this
context.

The following algorithm implements one time step of the implicit strategy A. The adaptive
algorithm ensures that the mesh refinement/coarsening is done at least once in each time step,
even if the error estimate is below the limit. Nevertheless, the error might not be equally
distributed over all elements; for some simplices the local error estimates might be bigger
than allowed.

1.5.7 Algorithm (Implicit strategy A).

Start with given parameters fol and time step size T,
the solution u, from the previous time step on grid S,

Spt1 = Sn

solve the discrete problem for u,4; on S,4+1 using data wu,
compute error estimates on Sp41

do

mark elements for refinement or coarsening
if elements are marked then

38 CHAPTER 1. CONCEPTS AND ABSTRACT ALGORITHMS

adapt mesh S,4; producing a modified Sp4
solve the discrete problem for u,4+; on S,4+1 using data u,
compute error estimates on Spi1
end if
while 7 > tol

1.5.4.1 Adaptive control of the time step size

A posteriori error estimates for parabolic problems usually consist of four different types of
terms:

e terms estimating the initial error;

e terms estimating the error from discretization in space;

e terms estimating the error from mesh coarsening between time steps;
e terms estimating the error from discretization in time.

Thus, the total estimate can be split into parts

10y NMh, Ne, and 7y

estimating these four different error parts.

Example: Eriksson and Johnson [31] prove an a posteriori error estimate for the discontin-
uous Galerkin time discretization of the heat equation

u—Au=f inQ, wu,,=0, w,_,=up;

the error estimate for piecewise constant time discretization and piecewise linear discretization
in space is given by

Jultx) = Unll < lluo = U] + max (CluhifHLoo(In,L?(S))+C2 /sy

(3 et
e€By "

where U, is the discrete solution on I, := (t,_1,%n), Tn = tn — tn_1 is the n'™ time step size,
[] denotes jumps over edges or between time intervals, and || - || denotes the norm in L?().
The last term Cj|| ... || is present only in case of mesh coarsening. The constants C; depend
on the time ¢y and the size of the last time step: C; = C’i(log(%)).

This leads to the following error estimator parts:

5]

A\ Cu||U, U, C
o,) + Cyl|Up — Up—1|| + 5’

n = |luo—Uoll,
~ ~ /1
m o= 5 (Gl Iy + G5 T 1

SeSn eCoS
bl
L2(S) >

Ne = Z (C’E)}
= ool ansy + G).

5]

2>1/2>7

2]

n

[Un] |

T
SES, "

1.5. ADAPTIVE METHODS 39

When a bound tol is given for the total error produced in each time step, the widely used
strategy is to allow one fixed portion I'g tol to be produced by the discretization of initial
data, a portion I'}, tol to be produced by the spatial discretization, and another portion I'; tol
of the error to be produced by the time discretization, with I'g+ 'y, + ', < 1.0. The adaptive
procedure now tries to adjust time step sizes and meshes such that

No ~ FO tol

and in every time step
nr~IT;tol and np,+n.~T}ytol.

The adjustment of the time step size can be done via extrapolation techniques known
from numerical methods for ordinary differential equations, or iteratively: The algorithm
starts from the previous time step size 7,4 or from an initial guess. A parameter §; € (0,1)
is used to reduce the step size until the estimate is below the given bound. If the error is
smaller than the bound, the step size is enlarged by a factor d2 > 1 (usually depending on the
order of the time discretization). In this case, the actual time step is not recalculated, only
the initial step size for the next time step is changed. Two additional parameters 6; € (0,1),
02 € (0,0;) are used to keep the algorithm robust, just like it is done in the equidistribution
strategy for the mesh adaption. The algorithm starts from the previous time step size 7,q or
from an initial guess.

If 91 = 1, consecutive time steps may vary only slightly, but the number of iterations
for getting the new accepted time step may increase. Again, as each iteration includes the
solution of a discrete problem, this value should be chosen not too large. For a first order
time discretization scheme, a common choice is §; ~ 1/v/2.

1.5.8 Algorithm (Time step size control).
Start with parameters d; € (0,1), 62 > 1, 6, € (0,1), 62 € (0,6;)

T = Told
Solve time step problem and estimate the error
while n, > 601 ', tol do

T =0T

Solve time step problem and estimate the error
end while
if 0, <021, tol then

T 1= 09T
end if

The above algorithm controls only the time step size, but does not show the mesh adaption.
There are several possibilities to combine both controls. An inclusion of the grid adaption in
every iteration of Algorithm 1.5.8 can result in a large number of discrete problems to solve,
especially if the time step size is reduced more than once. A better procedure is first to do
the step size control with the old mesh, then adapt the mesh, and after this check the time
error again. In combination with the implicit strategy A, this procedure leads to the following
algorithm for one single time step

1.5.9 Algorithm (Time and space adaptive algorithm).

Start with given parameter tol, 6, € (0,1), d2>1, 6; € (0,1), 62 € (0,6y),

40 CHAPTER 1. CONCEPTS AND ABSTRACT ALGORITHMS

the solution u, from the previous time step on grid &, at time ¢,
with time step size T,

'Sn-i-l =Sy
Tn+l = Tn
lnt1 = th + Tt

solve the discrete problem for u,y; on S,y using data uy,
compute error estimates on Spii

while n, > 6, I'; tol
Tn+1 5 01 Tn+1
tpy1 =ty + Tyl
solve the discrete problem for u,i; on Spq1 using data u,
compute error estimates on S,
end while

do
mark elements for refinement or coarsening
if elements are marked then
adapt mesh S,4; producing a modified S,4;
solve the discrete problem for u,y; on S,41 using data u,
compute estimates on Sp41

end if

while n, > 011, tol
Tl = 01 Tnil
thy1 1= tn + Thp

solve the discrete problem for u,4+; on Sp4+1 using data wu,
compute error estimates on Spii
end while
while np > tol
if 0, <031, tol then
T4l 1= 02 Tpyt

end if

The adaptive a posteriori approach can be extended to the adaptive choice of the order
of the time discretization: Bornemann [17, 18, 19] describes an adaptive variable order time
discretization method, combined with implicit strategy B using the extrapolation marking
strategy for the mesh adaption.

1.6 Submeshes

Probably the most significant new feature introduced in ALBERTA 2.0 are the automatic
generation and maintenance of submeshes or slave meshes. We motivate the idea by extending
the model problem (1.7) to include inhomogeneous Neumann boundary conditions:

—V-AVu+b-Vu+cu=f in Q, (1.25a)
u=g¢gp onlp, (1.25b)
vo-AVu=gy onTy, (1.25¢)

1.6. SUBMESHES 41

with a given function gy : I'y — R. Using the notation of Section 1.4.5 our weak formulation
now consists of finding a solution u € X, such that u € gp + X and

/Q (Vip()) - A(@)Vu(x) + () bx) - Vu() + c(x) o(x) () da =

f(@) p(x) de + / on () () do(x) (1.26)
Q I'n

for all ¢ € X. Here we have used 7 to denote the weak trace operator from H*(Q) to H 2 (T'w)
REFERENZ EINFUEGEN???. The inhomogeneous Neumann boundary condition there-
fore leads to an additional term on the right hand side.

Consider again a finite dimensional subspace X; C X with N = dim X} based on a
triangulation S of 2. Assume that S is constructed in such a way that

Iv=J with T ={SNTy;S €S} (1.27)
TeT

holds. In other words, the triangulation S of €2 induces a triangulation T of I'y. We define

Yy, = span{ypp; on € Xp}.

Let X}, be chosen as the space of standard Lagrange elements of order p on the triangulation
S of Q. Thanks to (1.27) we then have that Y}, is exactly the corresponding space of Lagrange
elements of order p on the triangulation 7 of I'y. The position of the DOFs of Y}, in space
coincides with corresponding DOFs of Xj,.

To be precise, let us again define bases {¢1,...,on} of X, and {1,...,¢¥p} of Yj,. Then
there exists a unique injective mapping of indices J with the following properties:

J:A{l,...,M} = {1,...,N},
Vi =Y93) foralli=1,..., M.
The mesh T satisfying the conformity property (1.27) is known as a submesh of S.
Making use of these properties, we can implement the assemblage of the additional right

hand side as follows. Assume that a load vector f as defined in (1.12) is already assembled.
Define a temporary quantity g associated with Y}, as

(gn, ¢1>Yh* XYy,
g:= : : (1.28)

(on, ¢M>y,j XYy,

with
(3. W)y ey, = [() (o) dola).

Let j € {1,...,N}. We have

/FN gn (z) vpj(z) do(ﬂﬂ):/ gn () v 13)(x) do(x) =/ gn (z) Yi(x) do(x)

I'n INY

42 CHAPTER 1. CONCEPTS AND ABSTRACT ALGORITHMS
if j = J(i) for some i € {1,..., N} and
[anta)ves(e) dow) =0
I'n

otherwise. We may therefore complete the assemblage of f using the loop

fj(i):fj(i)-i-gi fori=1,..., M. (1.29)

It follows that we may make use of standard ALBERTA routines for the assemblage of right
hand sides, here applied to the finite element space Y}, on the submesh 7. This enables us
to create simple and clear code. Furthermore, we assembled the right hand side contribution
due to the Neumann boundary condition by traversing the smaller submesh instead of the
bulk mesh, which may reduce computational effort. On the downside, we now need to store
the submesh 7T as well as the mapping of indices J in memory.

The current version ALBERTA 2.0 provides an automatic mechanism to generate sub-
meshes. The user must only provide a function which will implement the decision about
which subsimplices of which macro elements will belong to the newly created submesh. AL-
BERTA takes care of providing an index mapping J, given that fitting Lagrange elements are
used on bulk mesh and submesh.

Most important however is the fact that ALBERTA will automatically refine and coarsen
bulk mesh and submeshes simultaneously, which means that the property (1.27) is preserved
throughout an adaptive simulation. The user may even define submeshes of submeshes, al-
lowing whole hierarchies of dependent meshes, see Figure 1.19.

Figure 1.19: Entire hierarchies of submeshes may be defined.

Bibliography

[1]

M. AINSWORTH AND J. T. ODEN, A unified approach to a posteriori error estimation
using element residual methods, Numer. Math., 65 (1993), pp. 23-50.

[2] ——, A posteriori error estimation in finite element analysis, Wiley, 2000.

[3]

[4]

1. BABUSKA AND W. RHEINBOLDT, Error estimates for adaptive finite element compu-
tations, STAM J. Numer. Anal., 15 (1978), pp. 736—754.

A. BAMBERGER, E. BANSCH, AND K. G. SIEBERT, Ezperimental and numerical inves-
tigation of edge tones. Preprint WIAS Berlin no. 681, 2001.

R. E. BANK, PLTMG: a software package for solving elliptic partial differential equations
user’s guide 8.0. Software - Environments - Tools. 5. Philadelphia, PA: STAM. xii, 1998.

R. E. BANK AND A. WEISER, Some a posteriori error estimators for elliptic partial
differential equations., Math. Comput., 44 (1985), pp. 283-301.

E. BANSCH, Local mesh refinement in 2 and 3 dimensions, IMPACT Comput. Sci. En-
grg., 3 (1991), pp. 181-191.

[8] ——, Adaptive finite element techniques for the Navier—Stokes equations and other tran-

[11]

[12]

sient problems, in Adaptive Finite and Boundary Elements, C. A. Brebbia and M. H.
Aliabadi, eds., Computational Mechanics Publications and Elsevier, 1993, pp. 47-76.

E. BANSCH AND K. G. SIEBERT, A posteriori error estimation for nonlinear problems
by duality techniques. Preprint 30, Universitat Freiburg, 1995.

P. Bastian, K. BIRKEN, K. JOHANNSEN, S. LANG, V. REICHENBERGER,
C. WIENERS, G. WITTUM, AND C. WROBEL, Parallel solution of partial differential
equations with adaptive multigrid methods on unstructured grids, in High performance
computing in science and engineering 99, E. Krause and et al., eds., Berlin: Springer,
2000, pp. 496-508. Transactions of the High Performance Computing Center Stuttgart
(HLRS). 2nd workshop, Stuttgart, Germany, October 4-6, 1999.

R. BECK, B. ERDMANN, AND R. ROITZSCH, An object-oriented adaptive finite element
code: Design issues and applications in hyperthermia treatment planning, in Modern
software tools for scientific computing, E. Arge and et al., eds., Boston: Birkhaeuser,
1997, pp. 105-124. International workshop, Oslo, Norway, September 16-18, 1996.

R. BECKER AND R. RANNACHER, A feed-back approach to error control in finite element
methods: Basic analysis and examples., East-West J. Numer. Math., 4 (1996), pp. 237
264.

43

44

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

BIBLIOGRAPHY

J. BEY, Tetrahedral grid refinement, Computing, 55 (1995), pp. 355-378.

—, Simplicial grid refinement: On Freudenthal’s algorithm and the optimal number of
congruence classes, Numer. Math., 85 (2000), pp. 1-29.

P. BiNEv, W. DAHMEN, AND R. DEVORE, Adaptive finite element methods with con-
vergence rates. IGPM Report No. 219, RWTH Aachen, 2002.

M. BOouM, A. SCHMIDT, AND M. WOLFF, Adaptive finite element simulation of a model
for transformation induced plasticity in steel. Report ZeTeM Bremen, 2003.

F. A. BORNEMAN, An adaptive multilevel approach to parabolic equations I, IMPACT
Comput. Sci. Engrg., 2 (1990), pp. 279-317.

—, An adaptive multilevel approach to parabolic equations II, IMPACT Comput. Sci.
Engrg., 3 (1990), pp. 93-122.

— An adaptive multilevel approach to parabolic equations III, IMPACT Comput. Sci.
Engrg., 4 (1992), pp. 1-45.

F. A. BORNEMANN, B. ERDMANN, AND R. KORNHUBER, A posteriori error estimates
for elliptic problems in two and three space dimensions., STAM J. Numer. Anal., 33
(1996), pp. 1188-1204.

S. BoscHERT, A. ScumIDT, K. G. SIEBERT, E. BANScH, K. W. BENz, G. DzIUK,
AND T. KAISER, Simulation of industrial crystal growth by the vertical Bridgman method,
in Mathematics - Key Technology for the Future Joint Projects Between Universities and
Industry, W. Jager and H.-J. Krebs, eds., Springer, 2003, pp. 315-330.

S. C. BRENNER AND L. ScoTT, The mathematical theory of finite element methods. 2nd
ed., Springer, 2002.

Z. CHEN AND R. H. NOCHETTO, Residual type a posteriori error estimates for elliptic
obstacle problems., Numer. Math., 84 (2000), pp. 527-548.

P. G. CIARLET, The finite element methods for elliptic problems. Repr., unabridged
republ. of the orig. 1978., STAM, 2002.

L. DEmMkowicz, J. T. ObDEN, W. RAcHOWICZ, AND O. HARDY, Toward a universal h—
p adaptive finite element strategy, Part 1 — Part 3, Comp. Methods Appl. Mech. Engrg.,
77 (1989), pp. 79-212.

W. DORFLER, FORTRAN-Bibliothek der Orthogonalen Fehler—Methoden, Manual,
Mathematische Fakultat Freiburg, 1995.

— A robust adaptive strategy for the monlinear poisson equation, Computing, 55
(1995), pp. 289-304.

——, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal.,
33 (1996), pp. 1106-1124.

—, A time- and spaceadaptive algorithm for the linear time-dependent Schrédinger
equation, Numer. Math., 73 (1996), pp. 419-448.

BIBLIOGRAPHY 45

[30]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

W. DORFLER AND K. G. SIEBERT, An adaptive finite element method for minimal sur-
faces, in Geometric Analysis and Nonlinear Partial Differential Equations, S. Hildebrandt
and H. Karcher, eds., Springer, 2003, pp. 146-175.

K. ERIKSSON AND C. JOHNSON, Adaptive finite element methods for parabolic problems
I: A linear model problem, STAM J. Numer. Anal., 28 (1991), pp. 43-77.

J. FROHLICH, J. LANG, AND R. ROITZSCH, Selfadaptive finite element computations
with smooth time controller and anisotropic refinement, in Numerical Methods in Engi-
neering, J. Desideri, P. Tallec, E. Onate, J. Periaux, and E. Stein, eds., John Wiley &
Sons, New York, 1996, pp. 523-527.

H. JARAUSCH, On an adaptive grid refining technique for finite element approrimations,
SIAM J. Sci. Stat. Comput., 7 (1986), pp. 1105-1120.

R. KORNHUBER AND R. ROITZSCH, On adaptive grid refinement in the presence of
internal or boundary layers, IMPACT Comput. Sci. Engrg., 2 (1990), pp. 40-72.

I. KOSSACZKY, A recursive approach to local mesh refinement in two and three dimen-
sions, J. Comput. Appl. Math., 55 (1994), pp. 275-288.

K. LiN, S. BoscHERT, P. DoLDp, K. W. BeNz, O. KRriessL, A. ScamipT, K. G.
SIEBERT, AND G. DzIUK, Numerical methods for industrial vertical Bridgman growth of
(Cd,Zn)Te, J. Crystal Growth, 237-239 (2002), pp. 1736-1740.

J. M. MAUBACH, Local bisection refinement for n-simplicial grids generated by reflection,
STAM J. Sci. Comput., 16 (1995), pp. 210-227.

W. F. MITCHELL, Unified Multilevel Adaptive Finite Element Methods for Elliptic Prob-
lems, PhD thesis, Department of Computer Science, University of Illinois, Urbana, 1988.

— A comparison of adaptive refinement techniques for elliptic problems, ACM Trans.
Math. Softw., 15 (1989), pp. 326-347.

——, MGGHAT: Elliptic PDE software with adaptive refinement, multigrid and high
order finite elements, in Sixth Copper Mountain Conference on Multigrid Methods, N. D.
Melson, T. A. Manteuffel, and S. F. McCormick, eds., NASA, 1993, pp. 439-448.

P. MoriN, R. H. NOCHETTO, AND K. G. SIEBERT, Data oscillation and convergence
of adaptive FEM, SIAM J. Numer. Anal., 38 (2000), pp. 466—488.

——, Convergence of adaptive finite element methods, SIAM Review, 44 (2002), pp. 631—
658.

—, Local problems on stars: A posteriori error estimators, convergence, and perfor-
mance, Math. Comp., 72 (2003), pp. 1067-1097.

R. H. NOCHETTO, A. SCHMIDT, AND C. VERDI, A posteriori error estimation and
adaptivity for degenerate parabolic problems, Math. Comput., 69 (2000), pp. 1-24.

R. H. NocHETTO, K. G. SIEBERT, AND A. VEESER, Pointwise a posteriori error control
for elliptic obstacle problems, Numer. Math., 95 (2003), pp. 163-195.

46

[46]

BIBLIOGRAPHY

A. ScamiDT AND K. G. SIEBERT, Concepts of the finite element toolbox ALBERT.
Preprint 17/98 Freiburg, 1998. To appear in Notes on Numerical Fluid Mechanics.

[47) ——, Abstract data structures for a finite element package: Design principles of AL-

BERT., 7. Angew. Math. Mech., 79 (1999), pp. S49-S52.

[48] ——, A posteriori estimators for the h—p version of the finite element method in 1d,

Applied Numerical Mathematics, 35 (2000), pp. 43—46.

[49] ——, ALBERT — Software for scientific computations and applications, Acta Math. Univ.

[50]

[51]

[52]

[53]

[54]

Comenianae, 70 (2001), pp. 105-122.

J. SCHOEBERL, NETGEN: An advancing front 2D/3D-mesh generator based on abstract
rules., Comput. Vis. Sci., 1 (1997), pp. 41-52.

J. R. SHEWCHUK, Triangle: Engineering a 2D Quality Mesh Generator and Delaunay
Triangulator, in Applied Computational Geometry: Towards Geometric Engineering,
M. C. Lin and D. Manocha, eds., vol. 1148 of Lecture Notes in Computer Science,
Springer-Verlag, May 1996, pp. 203-222. From the First ACM Workshop on Applied
Computational Geometry.

K. G. SIEBERT, A posteriori error estimator for anisotropic refinement, Numer. Math.,
73 (1996), pp. 373-398.

R. STEVENSON, An optimal adaptive finite element method. Preprint No. 1271, Depart-
ment of Mathematics, University of Utrecht, 2003.

A. VEESER, Efficient and reliable a posteriori error estimators for elliptic obstacle prob-
lems., STAM J. Numer. Anal., 39 (2001), pp. 146-167.

[55] ——, Convergent adaptive finite elements for the nonlinear Laplacian, Numer. Math.,

[56]

92 (2002), pp. 743-770.

R. VERFURTH, A posteriori error estimation and adaptive mesh—refinement techniques,
J. Comp. Appl. Math., 50 (1994), pp. 67-83.

[57) ——, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Tech-

[58]

niques, Wiley-Teubner, 1996.

O. C. ZiENKIEWICZ, D. W. KELLY, J. GAGO, AND 1. BABUSKA, Hierarchical finite
element approaches, error estimates and adaptive refinement, in The mathematics of
finite elements and applications IV, J. Whiteman, ed., Academic Press, 1982, pp. 313—
346.

	Preface
	Contents
	Introduction
	Concepts and abstract algorithms
	Mesh refinement and coarsening
	Refinement algorithms for simplicial meshes
	Coarsening algorithm for simplicial meshes
	Operations during refinement and coarsening

	The hierarchical mesh
	Degrees of freedom
	Finite element spaces and finite element discretization
	Barycentric coordinates
	Finite element spaces
	Evaluation of finite element functions
	Interpolation and restriction during refinement and coarsening
	Discretization of 2nd order problems
	Discretization of coupled vector valued problems
	Numerical quadrature
	Finite element discretization of 2nd order problems

	Adaptive Methods
	Adaptive method for stationary problems
	Mesh refinement strategies
	Coarsening strategies
	Adaptive methods for time dependent problems

	Submeshes

	Bibliography

