From e1a3041b01288d48cc0bea1b430ebb0fe3d01f5a Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?Maximilian=20H=C3=B6rl?=
 <maximilian.hoerl@mathematik.uni-stuttgart.de>
Date: Wed, 22 Jan 2020 19:04:00 +0100
Subject: [PATCH] use pointer for A in dg.hh

---
 dune/mmdg/dg.hh | 65 ++++++++++++++++++++++---------------------------
 1 file changed, 29 insertions(+), 36 deletions(-)

diff --git a/dune/mmdg/dg.hh b/dune/mmdg/dg.hh
index d115dfa..3e69390 100644
--- a/dune/mmdg/dg.hh
+++ b/dune/mmdg/dg.hh
@@ -32,7 +32,7 @@ public:
     dof((1 + dim) * gridView.size(0))
     {
       //initialize stiffness matrix A, load vector b and solution vector d
-      A = Matrix(dof, dof, 4, 0.1, Matrix::implicit);
+      A = std::make_shared<Matrix>(dof, dof, 10, 1, Matrix::implicit); //TODO
       b = Vector(dof);
       d = Vector(dof);
     }
@@ -43,7 +43,7 @@ public:
     assembleSLE(K, mu);
 
     Dune::InverseOperatorResult result;
-    Dune::UMFPack<Matrix> solver(A);
+    Dune::UMFPack<Matrix> solver(*A);
     solver.apply(d, b, result);
 
     //storage for pressure data, for each element we store the
@@ -156,7 +156,7 @@ private:
       {
         //exact evaluation of
         // int_elem K*grad(phi_elem,i)*grad(phi_elem,i) dV
-        A.entry(elemIdxSLE + i + 1, elemIdxSLE + i + 1) += K * elemVol;
+        A->entry(elemIdxSLE + i + 1, elemIdxSLE + i + 1) += K * elemVol;
       }
 
       //iterate over all intersection with the boundary of elem
@@ -212,7 +212,7 @@ private:
 
         //exact evaluation of
         // int_intersct mu*jump(phi_elem,0)*jump(phi_elem,0) ds
-        A.entry(elemIdxSLE, elemIdxSLE) += mu * intersctVol;
+        A->entry(elemIdxSLE, elemIdxSLE) += mu * intersctVol;
 
         if (intersct.neighbor()) //intersct has neighboring element
         {
@@ -227,7 +227,7 @@ private:
             //and
             // int_intersct avg(K*grad(phi_elem,i))*jump(phi_elem,0) ds
             // = 0.5 * K * normal[i] * vol(intersct)
-            A.entry(elemIdxSLE + i + 1, elemIdxSLE) +=
+            A->entry(elemIdxSLE + i + 1, elemIdxSLE) +=
               mu * linearIntegrals[i] - 0.5 * K * normal[i] * intersctVol;
 
             for (int j = 0; j <= i; j++)
@@ -238,7 +238,7 @@ private:
               //and
               // int_intersct avg(K*grad(phi_elem,i))*jump(phi_elem,j) ds
               // = 0.5 * K * normal[i] * int_intersct x_j ds
-              A.entry(elemIdxSLE + i + 1, elemIdxSLE + j + 1)
+              A->entry(elemIdxSLE + i + 1, elemIdxSLE + j + 1)
                 += mu * quadraticIntregrals[i][j]
                   - 0.5 * K * (normal[i] * linearIntegrals[j]
                     + normal[j] * linearIntegrals[i]);
@@ -252,11 +252,11 @@ private:
 
           //exact evaluation of
           // int_intersct mu*jump(phi_elem,0)*jump(phi_neighbor,0) ds
-          A.entry(elemIdxSLE, neighborIdxSLE) += -mu * intersctVol;
+          A->entry(elemIdxSLE, neighborIdxSLE) += -mu * intersctVol;
 
           //stiffness matrix A is symmetric
-          A.entry(neighborIdxSLE, elemIdxSLE) +=
-            A.entry(elemIdxSLE, neighborIdxSLE);
+          A->entry(neighborIdxSLE, elemIdxSLE) +=
+            A->entry(elemIdxSLE, neighborIdxSLE);
 
           for (int i = 0; i < dim; i++)
           {
@@ -268,7 +268,7 @@ private:
             // int_intersct avg(K*grad(phi_neighbor,i))
             //  *jump(phi_elem,0) ds
             // = 0.5 * K * normal[i] * vol(intersct)
-            A.entry(elemIdxSLE + i + 1, neighborIdxSLE) +=
+            A->entry(elemIdxSLE + i + 1, neighborIdxSLE) +=
               -mu * linearIntegrals[i] + 0.5 * K * normal[i] * intersctVol;
 
             //we use the relations
@@ -279,14 +279,14 @@ private:
             // int_intersct avg(K*grad(phi_neighbor,i))
             //  *jump(phi_elem,0) ds
             // = 0.5 * K * normal[i] * vol(intersct)
-            A.entry(elemIdxSLE, neighborIdxSLE + i + 1) +=
+            A->entry(elemIdxSLE, neighborIdxSLE + i + 1) +=
               -mu * linearIntegrals[i] - 0.5 * K * normal[i] * intersctVol;
 
             //stiffness matrix A is symmetric
-            A.entry(neighborIdxSLE, elemIdxSLE + i + 1) +=
-              A.entry(elemIdxSLE + i + 1, neighborIdxSLE);
-            A.entry(neighborIdxSLE + i + 1, elemIdxSLE) +=
-              A.entry(elemIdxSLE, neighborIdxSLE + i + 1);
+            A->entry(neighborIdxSLE, elemIdxSLE + i + 1) +=
+              A->entry(elemIdxSLE + i + 1, neighborIdxSLE);
+            A->entry(neighborIdxSLE + i + 1, elemIdxSLE) +=
+              A->entry(elemIdxSLE, neighborIdxSLE + i + 1);
 
             for (int j = 0; j <= i; j++)
             {
@@ -302,14 +302,14 @@ private:
               // int_intersct avg(K*grad(phi_elem,i))
               //  *jump(phi_neighbor,j) ds
               // = -0.5 * K * normal[i] * int_intersct x_j ds
-              A.entry(elemIdxSLE + i + 1, neighborIdxSLE + j + 1) +=
+              A->entry(elemIdxSLE + i + 1, neighborIdxSLE + j + 1) +=
                 -mu * quadraticIntregrals[i][j]
                 - 0.5 * K * (normal[j] * linearIntegrals[i]
                   - normal[i] * linearIntegrals[j]);
 
               //stiffness matrix A is symmetric
-              A.entry(neighborIdxSLE + j + 1, elemIdxSLE + i + 1) +=
-                A.entry(elemIdxSLE + i + 1, neighborIdxSLE + j + 1);
+              A->entry(neighborIdxSLE + j + 1, elemIdxSLE + i + 1) +=
+                A->entry(elemIdxSLE + i + 1, neighborIdxSLE + j + 1);
 
               if (i != j)
               {
@@ -324,14 +324,14 @@ private:
                 // int_intersct avg(K*grad(phi_elem,j))
                 //  *jump(phi_neighbor,i) ds
                 // = -0.5 * K * normal[j] * int_intersct x_i ds
-                A.entry(elemIdxSLE + j + 1, neighborIdxSLE + i + 1) +=
+                A->entry(elemIdxSLE + j + 1, neighborIdxSLE + i + 1) +=
                   -mu * quadraticIntregrals[i][j]
                   - 0.5 * K * (normal[i] * linearIntegrals[j]
                     - normal[j] * linearIntegrals[i]);
 
                 //stiffness matrix A is symmetric
-                A.entry(neighborIdxSLE + i + 1, elemIdxSLE + j + 1) +=
-                  A.entry(elemIdxSLE + j + 1, neighborIdxSLE + i + 1);
+                A->entry(neighborIdxSLE + i + 1, elemIdxSLE + j + 1) +=
+                  A->entry(elemIdxSLE + j + 1, neighborIdxSLE + i + 1);
               }
             }
           }
@@ -346,7 +346,7 @@ private:
             // int_intersct avg(K*grad(phi_elem,i))
             //  *jump(phi_elem,0) ds
             // = K * normal[i] * vol(intersct)
-            A.entry(elemIdxSLE + i + 1, elemIdxSLE) +=
+            A->entry(elemIdxSLE + i + 1, elemIdxSLE) +=
               mu * linearIntegrals[i] - 0.5 * K * normal[i] * intersctVol;
 
             for (int j = 0; j <= i; j++)
@@ -358,7 +358,7 @@ private:
               // int_intersct avg(K*grad(phi_elem,i))
               //  *jump(phi_elem,j) ds
               // = 0.5 * K * normal[i] * int_intersct x_j ds
-              A.entry(elemIdxSLE + i + 1, elemIdxSLE + j + 1) +=
+              A->entry(elemIdxSLE + i + 1, elemIdxSLE + j + 1) +=
                 mu * quadraticIntregrals[i][j]
                 - 0.5 * K * (normal[i] * linearIntegrals[j]
                   + normal[j] * linearIntegrals[i]);
@@ -370,29 +370,22 @@ private:
       //stiffness matrix A is symmetric
       for (int i = 0; i < dim; i++)
       {
-        A.entry(elemIdxSLE, elemIdxSLE + i + 1) =
-          A.entry(elemIdxSLE + i + 1, elemIdxSLE);
+        A->entry(elemIdxSLE, elemIdxSLE + i + 1) =
+          A->entry(elemIdxSLE + i + 1, elemIdxSLE);
 
         for(int j = 0; j < i; j++)
         {
-          A.entry(elemIdxSLE + j + 1, elemIdxSLE + i + 1) =
-            A.entry(elemIdxSLE + i + 1, elemIdxSLE + j + 1);
+          A->entry(elemIdxSLE + j + 1, elemIdxSLE + i + 1) =
+            A->entry(elemIdxSLE + i + 1, elemIdxSLE + j + 1);
         }
       }
     }
 
-    //NOTE: check if A is symmetric
-  /*  for (int i = 0; i < dof; i++)
-      for (int j = 0; j < i; j++) */
-        /*assert*//*if(std::abs(A[i][j] - A[j][i]) >
-          std::numeric_limits<Scalar>::epsilon())
-            std::cout << i << ", " << j << std::endl; */
-
-    A.compress();
+    A->compress();
   }
 
 
-  Matrix A; //stiffness matrix
+  std::shared_ptr<Matrix> A; //stiffness matrix
   Vector b; //load vector
   Vector d; //solution vector
 };
-- 
GitLab